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We studied orthogonality loss during discretization of the definition domain
of classical orthogonal polynomials of a continuous argument. An efficient
algorithm for calculating high-order basis functions was proposed. Numerical
experiments were carried out to estimate the accuracy of the proposed algo-
rithm and Gaussian quadrature formulas. The problem of scale factor selection
for adaptive approximation and study of various radiophysical signals was con-

sidered [1-4].

PACS: 02.60.Cb, Gf; 43.60.Lq, Mn

1. Introduction.
Generalized Fourier series

Expansion of any function with respect to a
set of orthogonal functions is a classical problem
of functional analysis [5]. Numerical analysis in-
cludes several directions using orthogonal func-
tions [6]. Generalized Fourier series are linear
combinations

()= 4.2.0), )

where constants A, are referred to as the expansion
coefficients of function f(¢) over basis {@.(¢)}. The
basis { ¢,(¢)} satisfies the orthogonality condition
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(4(2),0,(1))=0 at i=#}],
(4(2).0,(1)) 20 at i=}],
in the sense of the scalar product functional with

weight (1) ((z) >0),

b

(x,y)= _[ x(2) y(2) p(2) at. (3)

a

(2}

The coefficients {¢@()} of expansion in basis
functions are determined from a set of linear equa-
tions derived by multiplying Eq. (1) by set {#(1)},

N .
> A(0.0,)=(f9,), i=0...N. (&)
i=0
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The advantage of orthogonal bases lies in the
fact that the expansion coefficients compose a di-
agonal (Graham) matrix and the explicit formulas

~=——(f’¢i) =0 N 5
; (¢i’¢i), i o A ®))

are applicable to calculate expansion coefficients (1).
For any orthogonal expansion in series (1), the

Bessel inequality (Lyapunov—Steklov equality at

N — o) characterizing completeness of set { g(f)},

7O = fgoAanqz,ni
| £ = (£(). 7(2))-

For any functions f and g represented by series (1),
the equality

(6)

N
(f.8)= AB.| ¢ @)
n=0

is valid. This relation introduces the scalar product
in space of expansion coefficients (isomorphism
between initial functional and expansion coeffi-
cient spaces). The orthogonal basis {@.(f)} with
weight p(f) may be associated with the basis

w.() = o(1) 8.(1) (®)

orthogonal with unit weight (isomorphism of Hil-
bert spaces).

Any function f is can be approximated with a
specified accuracy € at certain N=N,, if the or-
thogonal set {#(#)} is complete. Expansion coeffi-
cients (5) provide a minimum to the total error
functional

f(t)—gA,-«z-(t) =||f(t)||2—gA?|I¢.-ll2 )

and are independent of N.

Oy =

2. Discrete representation
of basis functions

In problems of experimental data processing,
the table representation

f(t)={f1(t1),f2(t2),“.,f,,,(t,,,)},

as<t;<b,

(10)

of a signal under study, or an analog of a function
of discrete argument, is initial. In this context, two
problems arise: interpolation of function (10) of dis-
crete argument and discretization of the scalar prod-
uct of basis functions {@,(¢)}. The former problem
is solved by data interpolation. The latter problem
arises in numerical calculation of integrals, in par-
ticular, expansion coefficients A,, and is subject to
a stringent requirement of basis orthogonality con-
servation. For approximate calculation of integrals
in a certain grid, orthogonality of {¢@,(#)} is in gen-
eral violated. Expanding the set of nonorthogonal
functions, coefficients A, cannot be calculated us-
ing formulas (5).

A discrete analog of scalar product (3) in space
of functions of discrete argument,

b m

(x,3)= [x(e) y(0)ol0) i =Y.

a i=]

x(t;) y(t;) wi, (1)

defines the equality between the integral and
sum only under certain conditions imposed on the
integrand and certain selection of nodes # and
weights w;. Gaussian quadratures are characterized
by the highest algebraic accuracy [7]. A special
selection of nodes and weights (a total number of
parameters is 2m) allows fulfillment of the condi-
tion that the quadrature formula would be accurate
for the integrand representing a polynomial of de-
gree not higher than 2m—1, multiplied by the
weight function (7). It was proved [7] that nodes
of quadrature formula (11) are zeros of an or-
thogonal polynomial of degree m, corresponding to
the weight function o(¢). At such isomorphism be-
tween space of linear combinations (1) and space
of functions of discrete argument in a specially
chosen grid, grid function (10) defined in nodes of
a polynomial of degree m is uniquely associated
with a polynomial of degree m—1, multiplied by a
root of weight function (8). Thus, Gaussian quad-
ratures associate the orthogonal set of functions of
a discrete argument with the orthogonal set of func-
tions of a continuous argument.
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3. Orthogonality violation
during discretization

Let us consider orthogonality violation by the
example of the Laguerre functions

L ek
ln(t)=\/;exp(—Ln2—t)ZC{,’_k%, (12)
k=0 ¥

where m>0 is the scale factor changing the effec-
tive length [,(¢) [8]. Figure 1 shows the general
view of the Laguerre function orthogonal in the
semi-infinite interval [0,oc). We can see that this
function is almost finite. Then the effective inter-
val, in which the amplitude of function oscillations
is of the same order of magnitude, linearly in-
creases with n.

High-order quadrature formulas are constructed
based on stable and effective calculation of basis
functions. Methods for calculating nodes and weights
for all the sets of classical orthogonal polynomials
[8] are proposed in the Numerical Recipes package
of procedures [9]. In this study, these procedures
were modified using a more stable algorithm for
calculating the Laguerre functions. In contrast to
the Numerical Recipes package [9] containing pro-
cedures for polynomials, we constructed quadra-
ture formulas for functions derived using Eq. (8).
Zeros of polynomials and functions corresponding
to them coincide, and weights of the Gaussian
quadrature formula for polynomials and functions
differ by the factor o(f) only. Passage from poly-
nomials to functions allows construction of high-

Ly
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Figure 1. Laguerre function /,(¢) at n=50 and m=1.
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order Gaussian quadrature formulas, since func-
tions are limited.

Figure 2 shows the calculated nodes and weights
of the Gaussian quadrature formula for Laguerre
functions. The nodes of the quadrature formula
were determined numerically as zeros of the La-
guerre orthogonal function. To determine and cor-
rect zeros most accurately and efficiently within
the computer accuracy, three iterative methods
were sequentially used: the Newton, regula falsi,
and interval bisection methods. Newton iterations
were efficient only for initial correction of the root,
since, beginning from a certain iteration (mostly
after the first one), they give rise to oscillations
around the corrected root. When the root becomes
limited from both sides, more efficient are itera-
tions over a secant, without determination the func-
tion derivative. At the final stage, to correct the root
in the last significant digits of the machine repre-
sentation mantissa, the interval bisection method

Wi
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Figure 2. Weights w; of the Gaussian quadrature for-
mula for Laguerre functions in relation to nodes #; (a)
and in comparison to weights of the rectangle rule (b)

(0<i<1000).
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Figure 3. Error order in the calculation of Graham matrix elements (4) for Laguerre functions (0<i<1000) using the

Gauss (left) and rectangle (right) methods.

was used. There exist analytical initial approxima-
tions for roots #; and #, [9], and initial approxima-
tions for the next roots were selected proceeding
from a monotonic increase in the distance between
the roots #;=ti_; + (ti.; — ti2) (Fig. 1). The weights of
the Gaussian quadrature formula were obtained from
the general relations (see [7])
L
nzl,?_l(t,-) ; (13)
To illustrate the fact of orthogonality conserva-
tion and violation, we compare the Gauss method
with the rectangle method. In the approximate in-
tegration using the rectangle method on the same
nonuniform Gaussian grid, the quadrature formula
weights were replaced with quantities w;=#;—f;_; at
i in the range from 2 to 1000 and w;=t,. One can
see in Fig. 2 that weights of two quadrature formu-
las differ slightly, mostly at the first and last points
of the quadrature formula. To show the difference
in not only the last weights, but also of the first
ones, they are compared on a logarithmical scale.
Figure 3 shows the Graham matrix elements cal-
culated for Laguerre orthogonal functions using the
Gauss and rectangle methods. The distribution of
the integration error is shown in the form of deci-
mal logarithm of the absolute value of the deviation
of the calculated Graham matrix from the theoreti-
cal (unit) matrix. The Gauss method is accurate for
a chosen class of functions, a source of errors is
cancellation of digits during approximate calcula-

Wi
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tions. The rectangle method does not conserve or-
thogonality of the functions under consideration,
and the error is systematic. This is indicated by the
difference in the errors in the former and latter
cases more than by ten orders of magnitude.

4. Construction of stable algorithms
for calculating
high-order orthogonal functions

Orthogonal polynomials satisfy the difference
equations

Ga(t) = (a+ bit) i(1) + (1),

where a;, b;, and c; are the coefficients independent
of t. Since Eq. (14) is homogeneous, both the poly-
nomials and corresponding functions satisfy this
equation. Direct calculation of polynomials using
formula (14) requires setting of initial conditions,
which are written as

4(1)=1, ¢.4(t)=0

for classical orthogonal polynomials in the conven-
tional form. :

The Laguerre polynomials [8] are orthogonal in
a semi-infinite interval with weight function e ".
The problem arising in the calculation of Laguerre
function (12) is as follows. The values of the La-
guerre function are defined by two factors: (i) the
polynomial oscillating and indefinitely increasing

and (ii) the root in the weight function, exponen-

(14)

5)
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Figure 4. Laguerre function /,(¢) calculated using Eq. (12)
atn=40and m=1.

tially decreasing as argument increases. At large
enough ¢, these factors in machine representation
result in overflow and disappearance of an order,
respectively. However, their product, i.e., the La-
guerre function, is a “good” value for machine rep-
resentation. Observing the Laguerre functions be-
ginning from the 33th order in the interval [0, 200],
it is interesting to note that the results are repeated
for direct algorithm of calculation by formula (12)
using various softwares (Fig.4). This is due to go-
ing over the range of allowed values during expo-
nentiation (the exponent is 30 and above) of the ar-
gument 7 in the numerical interval from 100 to 160.
In this case, the polynomial /,(f) contains a larger
number of zeros than n (Fig.4). It is more unex-
pected that the computing process becomes regular
after a certain value of ¢ (at n=35, r=150), and the
1,(t) curve damps proportionally to ™' (Fig. 5), as it
can be expected from Eq. (12).

Calculation of the sought-for functions [,(f) us-
ing recurrent relations (14) and (15) also results in
computing instability. The Laguerre functions I,
calculated by recurrent formulas (14), (15) and using
Eq. (12) significantly differ at n>40. To solve these
problems, the following procedure for calculating
the Laguerre functions was used.

At each step of iteration cycle (14), the calcu-
lated values of ¢(r) and ¢i(¢) are multiplied by
exp(~t/2n), where n is the Laguerre function order.
For n cycles, the common factor will become a

172
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Figure 5. Laguerre function /,(#) calculated using Eq. (12)
atn=35and m=1.

value of the factor required for determining the La-
guerre functions, i.e., exp(-t/2). The calculation
showed that such improvement of iterative process
(14), (15) allows reliable calculation of the Laguerre
functions above the 1000th order.

In this study, this idea is implemented in the
following algorithm. At each step, normalization
was carried out by variable 2 (k is the order of bi-
nary representation of ¢(#)) rather than by a constant
factor. In other words, the order of machine repre-
sentation of ¢(z) is nulled, while the orders of @.(7)
and ¢_(7) are changed by k. The integer variable C
contains a sum of changes in order k from the re-
current process beginning.

Finally, to obtain the value of the function ,(z) in
n iteration by formula (14) with initial conditions
(15), the result should be multiplied by the quantity

exp(CIn2-1/2). (16)

Such improvement of the algorithm adds only in-
teger operations; therefore, the function calculation
efficiency does not decrease and the stability in-
creases. This algorithm makes it possible to obtain
the values of all the functions from the zeroth to
(n—1)th order inclusively in n steps of recurrent
process (14), which provides high processing speed
of computing procedures [10]. No constraint for
the order of calculated functions was detected (the
algorithm was tested for the Laguerre and Hermite
functions with n=10000).
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5. Adaptive approximation
by orthogonal series

Let us consider the matching of the signal f(r)
existence range and the definition domain of basis
functions. Two methods can be used depending on
the problem and further processing. One method is
substitution of an argument of the approximated
function. Another is substitution of an argument of
basis functions. The latter method is more cumber-
some, since it introduces the interval parameters
into the basis parameters. However, this method is
unique in the solution of inverse problems, when it
is required to operate with an analytical form of
expansion and the approximation interval parame-
ters are unknown. This leads to construction of
modified bases [6].

In the case of approximation by functions 1,()
in the semi-infinite interval [0, <o), coefficients A;
are functions of the scale factor m,

am=lol” [r(£)owo0ya  an
0
Expansion can be optimized by varying the scale
coefficient m, i.e., the number N of terms of series
(1) can be decreased at a specified accuracy e. This
is achieved by minimizing the root-mean-square
error (9) as a function of the scale factor Oy (m),

O (Mope ) = min On(m). (18)

According to Eq.(9), the approximation error mo-
notonically decreases with increasing N, although
its dependence on m is more complex [6].

The effective duration of the Laguerre functions
depends linearly on N. Let us consider the squared
Laguerre function of the Nth order as the distribu-
tion density and determine an average radius of
this distribution,

[eL(r) edr =2N +1. (19)
0

One of the possible version of initial choice of
the scale factor for solving optimization problem

173

(18) is the value of m obtained upon matching of
effective intervals of function (10) and the highest-
order basis function.

6. Description of acoustic signals
by sets of orthogonal polynomials

Comparison of the spectrum composition (in
the sense of harmonic Fourier analysis) of Hermite,
Laguerre, Legendre and some other basis functions
shows obvious similarity of various acoustic sig-
nals and some high-order basis functions. It is in-
teresting to hear high-order orthogonal functions as
sound signals. Many of them resemble natural
sounds, hence, is convenient to synthesize sounds
and distinguish acoustic signals using these func-
tions. For example, Laguerre functions are ideal for
sounds of bell ringing or gun shots. Hermite func-
tions can be used to synthesize speech. The use of
functions identical in form to eigenfunctions of a
system under study makes it possible to simplify
the mathematical model. Therefore, Laguerre func-
tions are most optimum to describe transient proc-
esses as a response to a pulsed perturbation or such
a function as

f()=1-n(z), (20)
where 7(¢) is the Heaviside function.

We also carried out experiments on identifica-
tion and analytical description of various acoustic
signals, including speech ones, using the Chebyshev
and Legendre functions [1].

Selection of an appropriate basis and its tuning
by adaptive procedures such as (17) and (18) makes
it possible to use 10-10 series terms for reliable
identification.

7. Conclusion and discussion

The problems of numerical implementation of
methods of expansion in classical orthogonal se-
ries, considered in this paper, showed that the use
of Gaussian quadratures allows correct calculation
of the integral of the scalar product, whereas the
phenomenon of orthogonality violation arises when
using other quadratures. The Graham matrix con-
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ventionally interpreted in computing mathematics
as a measure of linear independence of a set of
functions, was used as a measure of orthogonality
in this study. The method proposed for calculating
high-order Laguerre and Hermite functions can be
applied to other orthogonal sets.

The urgency of the study of high-order or-
thogonal functions is confirmed in studies devoted
to solution of differential equations [11], as well as
study of random processes [12], development of
the wavelet analysis [13] and generalized spectral-
analytical method [6].

The authors are grateful to Prof. F.F.Dedus
(Lomonosov State University) for his attention to
this study and helpful remarks to the paper.
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