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A universal spectral analytical method for digital terrain
modeling
I. V. Florinsky and A. N. Pankratov

Institute of Mathematical Problems of Biology, the Keldysh Institute of Applied Mathematics, Russian
Academy of Sciences, Pushchino, Russia

ABSTRACT
There are three major mathematical problems in digital terrain
analysis: (1) interpolation of digital elevation models (DEMs); (2)
DEM generalization and denoising; and (3) computation of mor-
phometric variables through calculating partial derivatives of ele-
vation. Traditionally, these three problems are solved separately
by means of procedures implemented in different methods and
algorithms. In this article, we present a universal spectral analytical
method based on high-order orthogonal expansions using the
Chebyshev polynomials of the first kind with the subsequent
Fejér summation. The method is intended for the processing of
regularly spaced DEMs within a single framework including DEM
global approximation, denoising, generalization, as well as calcu-
lating the partial derivatives of elevation and local morphometric
variables.

The method is exemplified by a portion of the Great Rift Valley
and central Kenyan highlands. A DEM of this territory (the matrix
480 × 481 with a grid spacing of 30″) was extracted from the
global DEM SRTM30_PLUS. We evaluated various sets of expansion
coefficients (up to 7000) to approximate and reconstruct DEMs
with and without the Fejér summation. Digital models of horizon-
tal and vertical curvatures were computed using the first and
second partial derivatives of elevation derived from the recon-
structed DEMs. To evaluate the approximation accuracy, digital
models of residuals (differences between the reconstructed DEMs
and the initial one) were calculated. The test results demonstrated
that the method is characterized by a good performance (i.e., a
distinct monotonic convergence of the approximation) and a high
speed of data processing. The method can become an effective
alternative to common techniques of DEM processing.
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1. Introduction

Topography is one of the main factors controlling processes taking place in the near-
surface layer of the planet. In particular, topography is one of the soil forming factors
since it influences: (a) climatic and meteorological characteristics, which controls hydro-
logical and thermal regimes of soils; (b) prerequisites for gravity-driven overland and
intrasoil lateral transport of water and other substances; and (c) spatial distribution of
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vegetation cover. At the same time, being a result of the interaction of endogenous and
exogenous processes of different scales, topography can reflect the geological structure
of a terrain. In this connection, digital terrain analysis and digital terrain models (DTMs)
are widely used to solve various multiscale problems of geomorphology, hydrology,
remote sensing, soil science, geology, geophysics, geobotany, glaciology, oceanology,
climatology, planetology, and other disciplines (Wilson and Gallant 2000, Li et al. 2005,
Hengl and Reuter 2009, Florinsky 2012).

Mathematical issues of quantitative modeling and analysis of the topographic surface
can be summarized in three major problems (Florinsky 2012):

(1) Interpolation of irregularly and regularly spaced digital elevation models (DEMs),
bivariate discrete functions of elevation defining the topographic surface as a set
of values measured at the grid nodes. This task is commonly carried out by
various local interpolation methods (Schut 1976, Watson 1992, Mitas and
Mitasova 1999, Hutchinson 2008).

(2) DEM filtering to denoise, generalize, and decompose DEMs into components of
different spatial scales. These tasks can be attacked by 2D discrete Fourier trans-
form (Papo and Gelbman 1984, Harrison and Lo 1996, Arrell et al. 2008), local
quadratic approximation (Wood 1996), 2D discrete wavelet transform (Bergbauer
et al. 2003, Bjørke and Nilsen 2003, Wu 2003), and 2D singular spectrum analysis
(Golyandina et al. 2007).

(3) Derivation of local morphometric variables from regularly spaced DEMs. If the
topographic surface is defined by a continuous, single-valued bivariate function

z ¼ f x; yð Þ; (1)

where z is elevation, x and y are the Cartesian coordinates, local topographic variables
are functions of the partial derivatives of elevation

p ¼ @z
@x

; q ¼ @z
@y

; r ¼ @2z
@x2

; s ¼ @2z
@x@y

; t ¼ @2z
@y2

; . . . (2)

For example, horizontal (kh) and vertical (kv) curvatures, one of the most important
morphometric attributes, are calculated by the following equation (Shary 1995):

kh ¼ � q2r � 2pqsþ p2t

p2 þ q2ð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ p2 þ q2

p ; (3)

kv ¼ � p2r þ 2pqsþ q2t

p2 þ q2ð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ p2 þ q2ð Þ3

q : (4)

To compute p, q, r, s, and t (Equation 2) from DEMs on plane square grids or
spheroidal equal angular grids, one can apply methods based on approximation of
partial derivatives by finite differences using the 3 × 3 or 5 × 5 moving windows
(Evans 1979, 1980, 2013, Zevenbergen and Thorne 1987, Shary 1995, Florinsky 1998,
2009, Minár et al. 2013).
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Traditionally, these three key problems of digital terrain analysis are solved sepa-
rately by means of procedures implemented in different methods and algorithms.
Exceptions are very rare. For example, Mitášová and Mitáš (1993) developed a method
for local interpolation of DEMs using regularized splines with tension, allowing
simultaneous estimation of the partial derivatives of elevation (and, so, morphometric
characteristics).

However, all three problems may be resolved within a single framework of DTM
treatment based on the global approximation of a bivariate function by high-order
(orthogonal) polynomials. In the 1960s–1980s, there were attempts to apply high-
order polynomials for DEM global approximation (Heifetz 1964, Van Rossel 1972,
Yagodina 1972, Segu 1985). These attempts have faced some challenges (McCullagh
1988, p. 753). First, global polynomial approaches by themselves have required con-
siderable computer resources. Second, practical tasks have demanded to work with
increasingly large DEMs containing tens of thousands to a few million points. Existed
methods and computers could not handle such data amounts. As a result, an opinion
was formed that the topographic surface is too complex for wide application of global
polynomial approximations. The current prevailing view is that ‘high quality global
interpolation methods . . . are computationally impractical’ for digital terrain modeling
(Hutchinson 2008, p. 150). Only low-order (orthogonal) polynomials are utilized in trend-
surface analysis, a technique to reveal trend and residual components of the topo-
graphic surface (Chorley and Haggett 1965, Tobler 1969, Davis 2002, ch. 5). However,
progress in the theory and computational practice of polynomial approximation (Press
et al. 1992, chs. 3–5, Dedus A.F. et al. 1995, Dedus F.F. et al. 1995, 1999, 2002, 2004,
Britenkov and Pankratov 2004, Gautschi 2004, Pankratov and Britenkov 2004, Pankratov
2004a, 2004b, Pankratov et al. 2011, Kulikova 2007, Tetuev and Dedus 2007) as well as
advances in computer technology suggest that the mentioned problems are no longer
relevant.

In this article, we present a universal spectral analytical method based on high-order
orthogonal expansions using the Chebyshev polynomials. The method is intended for
the processing of regularly spaced DEMs within a single framework including DEM
global approximation, denoising, generalization, as well as calculating the partial deri-
vatives of elevation and local morphometric variables.

2. Method

Consider the function (Equation 1) defined in a rectangular domain. This function can be
approximated using the bivariate Chebyshev series expansion (Clenshaw and Hayes
1965, Fox and Parker 1968, § 6.22):

z x; yð Þ ¼
Xl�1

i¼0

Xl�1

j¼0

cijTi xð ÞTj yð Þ; (5)

where cij are expansion coefficients; Ti(x) and Tj(y) are the Chebyshev polynomials of the
first kind in the variables x and y of degrees i and j, respectively; l is the maximum
degree of expansion. It is assumed that the domain of the original function is translated
into the domain of the orthogonal polynomials by a linear transformation.
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The method can be described as consisting of four main stages: (1) calculation of
expansion coefficients; (2) the Fejér summation; (3) reconstruction of the approximated
function; and (4) calculation of derivatives. The 2D approximation of the original func-
tion (Equation 1) can be computationally performed as a superposition of two one-
dimensional approximations by the variables x and y. So, below we describe the stages
for the variable x only. For the variable y, the notations are mathematically identical.

Stage 1: Calculation of expansion coefficients. Let us apply numerical techniques for
the approximation of a univariate function u(x) using the Chebyshev series expansion
(Press et al. 1992, § 5.8, Pankratov 2004a, 2004b):

u xð Þ ¼
Xl�1

i¼0

ciTi xð Þ; (6)

where ci are expansion coefficients; Ti(x) are the Chebyshev polynomials of the first kind
in the variable x of degree i; l is the maximum degree of expansion. The Chebyshev
polynomials are defined as follows (Rivlin 1974, § 1.1):

TiðxÞ ¼ cos i arccos xð Þ; (7)

where i = 0, . . ., ∞. We normalize the first polynomial of the function (Equation 7) so that
T0ðxÞ ¼ 1ffiffi

2
p . This allows making the norm of each polynomial the same and equal

to
ffiffiffiffiffiffiffiffi
π=2

p
.

In the continuous form, the function Ti(x) (Equation 7) satisfies the orthogonality
condition under the scalar product:

Ti; Tj
� � ¼

ð1

�1

Ti xð ÞTj xð Þffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2

p dx ¼ 0
π=2

if i � j
if i ¼ j

�
; (8)

where i, j = 0, . . ., ∞.
In the discrete form, the orthogonality condition is also satisfied under the scalar

product on a Gaussian quadrature grid of k nodes:

Tn; Tmð Þ ¼ 2
k

Xk
i¼1

Tn �ið ÞTm �ið Þ ¼ 0
1

if n � m
if n ¼ m

�
; (9)

where n, m = 0, . . ., k – 1; ξi are nodes of the Gaussian quadrature grid:

�i ¼ cos
π i� 1=2ð Þ

k

� �
; i ¼ 1; 2; . . . ; k (10)

with k zeros of the orthogonal polynomial Tk(x).
The expansion coefficients cj can be calculated by the expression:

cj ¼ u; Tj
� � ¼ 2

k

Xk
i¼1

u �ið ÞTj �ið Þ: (11)

where u is the original univariate function on the Gaussian quadrature grid; j = 0, . . ., l –
1; l ≤ k; round brackets in the central part of the expression denote the scalar product.
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Stage 2: The Fejér summation. Approximations based on orthogonal polynomials
always lead to oscillatory artifacts due to the Gibbs phenomenon (Jerri 1998, ch. 3,
Florinsky 2002, § 2). In our case, this means that the Chebyshev series expansion
(Equation 6) does not converge uniformly to the original function u(x) at all points.
According to the Fejér theorem, the arithmetic mean of the partial sums of the Fourier
series of a continuous function converges uniformly to the function (Courant and Hilbert
1989, pp. 102–103, Jerri 1998, § 1.4). The Fejér theorem is also true for other orthogonal
series (Jerri 1998, § 3.5). In other words, a uniform convergence of the approximation
can be achieved replacing the initial expansion of u(x) (Equation 6) by the arithmetic
mean of the partial sums of the Chebyshev series:

~un xð Þ ¼ 1
n

Xn
l¼1

ul xð Þ; (12)

where ~un xð Þ is the Fejér sum. The Fejér summation is a powerful method to suppress
oscillatory artifacts in polynomial approximation (Jerri 1998, Pankratov and Kulikova 2006).

In our case, the transformation of the expansion coefficients cj, corresponding to the
Fejér summation, has the form:

~cj ¼ l � j
l

cj; (13)

where ~cj are coefficients of an orthogonal series ~un xð Þ; j = 0, . . ., l – 1.
Stage 3: Reconstruction of the approximated function. Reconstruction of the original

function is conducted by a simple summation of the orthogonal series. Generalization
and/or denoising of the function are performed decreasing the number of expansion
coefficients ~cj used for the reconstruction.

Stage 4: Calculation of derivatives. Let us calculate the first and second derivatives of
the reconstructed function. For a Chebyshev-approximated univariate function, Press
et al. (1992, § 5.9) described the calculation of the expansion coefficients of a derivative
from the expansion coefficients of the original function. For an arbitrary basis, Tetuev
and Dedus (2007, pp. 32–34) published a generalized conversion scheme for the
expansion coefficients.

For the present case, the recurrence relations for the expansion coefficients cʹj of the
first derivative of the orthogonal series are as follows:

c0 l�1 ¼ 0
c0 l�2 ¼ 2 l � 2ð Þ~cl�1

. . .
c0 j ¼ c0 jþ2 þ 2j~cjþ1; j ¼ l � 3; . . . ; 0
. . .
c00 ¼ c00ffiffi

2
p

8>>>>>><
>>>>>>:

: (14)

In the case of a linear transformation of function domain, expansion coefficients of
the derivative should be scaled:

c0j ¼
2
W

c0j ; (15)

where W is the length of a function interval, j = 0, . . ., l – 1.
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The expansion coefficients c″j of the second derivative are calculated in the similar
manner as cʹj (Equation 14):

c00 l�1 ¼ 0
c00 l�2 ¼ 2 l � 2ð Þc0 l�1

. . .
c00 j ¼ c00 jþ2 þ 2jc0 jþ1; j ¼ l � 3; . . . ; 0
. . .
c000 ¼ c000ffiffi

2
p

8>>>>>><
>>>>>>:

: (16)

The expansion coefficients of the nth order derivative can be similarly calculated.
After repeating the stages 1–4 for the variable y, we can obtain expressions for all partial

derivatives of elevation in the form of the bivariate orthogonal series similar to Equation (5).
For the first and second partial derivatives (Equation 2), the expressions are as follows:

p x; yð Þ ¼
Xl�1

i¼0

Xl�1

j¼0

cpij Ti xð ÞTj yð Þ; (17)

q x; yð Þ ¼
Xl�1

i¼0

Xl�1

j¼0

cqij Ti xð ÞTj yð Þ; (18)

r x; yð Þ ¼
Xl�1

i¼0

Xl�1

j¼0

crijTi xð ÞTj yð Þ; (19)

s x; yð Þ ¼
Xl�1

i¼0

Xl�1

j¼0

csijTi xð ÞTj yð Þ; (20)

t x; yð Þ ¼
Xl�1

i¼0

Xl�1

j¼0

ctijTi xð ÞTj yð Þ; (21)

where cpij , c
q
ij , c

r
ij, c

s
ij, and ctij are expansion coefficients for p, q, r, s, and t, respectively.

Now we can calculate values of the partial derivatives of elevation for all points of
the reconstructed DEM by a simple summation of the related orthogonal series
(Equations 17–21). Finally, to derive local morphometric variables, all the calculated
values of the partial derivatives are substituted into the related expressions (e.g.,
Equations 3 and 4).

The described method can be used if one can ignore the planetary curvature within a
DEM area. In other words, the diagonal length of a DEM rectangle should be less than at
most 0.1 of the average radius of the planet.

3. Algorithm

To describe the algorithm implementing the method we use a polynomial-oriented
matrix approach (Pankratov 2004b).
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Let the original function of elevation z (Equation 1) be specified as an m × n matrix A
with the elevation values at the nodes of a square grid; x1, . . ., xm and y1, . . ., yn are grid
nodes in the interval [–1, 1] along the x- and y-axes, respectively; and ξ1, . . ., ξk are nodes
of the Gaussian quadrature grid.

The k values determine the maximum degree of expansion l in Equation (5), that is,
k ≥ l. Since m ≈ n, the Gaussian quadrature grid is identical for the x- and y-axes. For a
more accurate calculation of the expansion coefficients, it is recommended to choose
the k value much greater than m and n: k = N ∙ max(m, n), N ≥ 8.

Let us introduce the following notations: Lxξ and Lyξ are a k × m and k × n matrices of
linear interpolation from the grids x and y, respectively, to the grid ξ; Tξ is an l × k matrix
of the Chebyshev polynomial values Ti(ξj) in the grid ξ, where i = 0, . . ., l – 1 and j = 1, . . .,
k; F is an l × l diagonal matrix with diagonal elements (l – i)/l for the Fejér summation.

The calculation of the expansion coefficients of the elevation function is carried out in
two steps. First, all columns of the matrix A are transformed into an l × n intermediate
matrix of the expansion coefficients Cy that corresponds to the expansion in the variable y:

Cy ¼ 2
k
FT�Ly�A: (22)

Second, the matrix Cy is transposed and the transformation is repeated that corre-
sponds to the expansion in the variable x:

C ¼ 2
k
FT�Lx�CT

y; (23)

where C is an l × l resultant square matrix of the expansion coefficients; T denotes the
matrix transpose.

Reconstruction of the approximated function is carried out by a summation of the
orthogonal series:

Z ¼ TTxC
TTy; (24)

where Z is an m × n matrix of the approximated values of the original function z
(Equation 1) at the nodes of the square grid; Tx and Ty are an l × m and l × n matrices
of the Chebyshev polynomial values Ti(xj) and Ti(yj) in the grids x and y, respectively.

Let D be an l × l differentiation operator in the space of expansion coefficients. In this
case, Cp, Cq, Cr, Cs, and Ct – an l × l square matrices of expansion coefficients of the first
and second partial derivatives p, q, r, s, and t (Equation 2) – are as follows:

Cp ¼ DC;

Cq ¼ DCT
� �T ¼ CDT;

Cr ¼ DCp;

Cs ¼ DCT
p

� 	T
¼ CpDT;

Ct ¼ DCT
q

� 	T
¼ CqD

T:

(25)

Reconstruction of the partial derivatives is carried out by a summation of the
orthogonal series. For the first and second partial derivatives:
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P ¼ TTxC
T
pTy;

Q ¼ TTxC
T
qTy;

R ¼ TTxC
T
r Ty;

S ¼ TTxC
T
sTy;

T ¼ TTxC
T
t Ty;

(26)

where P, Q, R, S, and T are an m × n matrices of the reconstructed values of the partial
derivatives of elevation p, q, r, s, and t (Equation 2), respectively. Similar expressions are
trivially deduced for the nth order partial derivatives.

4. Materials and data processing

To show the possibilities of the described method, we selected a portion of the East
African rift system measuring 4º × 4º (about 442 × 442 km), located between 2ºS and
2ºN, and 35ºE and 39ºE (Figure 1). The area covers central and western regions of Kenya
including a portion of the Great Rift Valley and central Kenyan highlands. A DEM of this
territory was extracted from the global DEM SRTM30_PLUS (Sandwell et al. 2008). The
DEM includes 230,880 points (the matrix 480 × 481); the grid spacing is 30″ (about
924 m) (Figure 2(a)).

First, using the finite-difference method (Florinsky 1998), we derived kh and kv models
from the initial DEM (Figures 3(a) and 4(a)).

Second, we evaluated various sets of expansion coefficients to approximate and
reconstruct DEMs. In particular, DEMs were reconstructed using 7000, 6000, 5000,
4000, 3400, 3000, 2880, 2400, 1920, 1200, 960, 480, 360, 240, 120, 60, and 30 expansion
coefficients. Some of the sets of expansion coefficients were selected to illustrate
capabilities of the method (Figure 2(b–f)). The first and second partial derivatives of

Figure 1. (a) Geographical location and the study area. (b) Key geological structures (Chorowicz
2005).
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elevation were calculated from each reconstructed DEM. Digital models of kh and kv
were then computed using the derivatives (Figures 3(b–f) and 4(b–f).

Third, to evaluate the approximation accuracy, digital models of residuals – that is,
differences between the reconstructed DEMs and the initial one – were calculated
(Figure 5). Fourth, we performed a pairwise comparison of the reconstructed DTMs with
the initial ones using samples extracted from each DTM. The sample size was 2209 points
(the matrix 47 × 47); the grid spacing was 5ʹ (Figure 6). In this case, results of statistical

Figure 2. Kenya, elevations: (a) Initial DEM. Elevations reconstructed with: (b) 2880, (c) 480, (d) 240,
(e) 120, and (f) 60 expansion coefficients.
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estimations cannot be affected by the regular sampling associated with the DEM grid. This
is because all mathematical procedures of the developed method are conducted on the
Gaussian quadrature grid rather than the DEM grid (see details in Sections 2 and 3).

Fifth, to evaluate a role of the Fejér summation in the DTM treatment, we repeated
DEM approximation as well as kh and kv derivation with the same sets of expansion
coefficients, but without the Fejér summation (Figure 7). Digital models of residuals for
the Fejér-free reconstructed DEMs were also calculated (Figure 8).

Figure 3. Kenya, horizontal curvature: (a) kh derived from the initial DEM. kh derived from recon-
structed DEMs with: (b) 2880, (c) 480, (d) 240, (e) 120, and (f) 60 expansion coefficients.
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Finally, statistical characteristics of the residuals for the DEMs, reconstructed with and
without Fejér summation, were obtained using samples from the digital models of
residuals (Table 1). The sample size was 2209 points (the matrix 47 × 47); the grid
spacing was 5ʹ.

Wide dynamic ranges usually characterize topographic variables. To avoid loss of infor-
mation on spatial distribution of values of morphometric attributes in mapping, it makes
sense to apply a logarithmic transform using the following expression (Shary et al. 2002):

Figure 4. Kenya, vertical curvature: (a) kv derived from the initial DEM. kv derived from reconstructed
DEMs with: (b) 2880, (c) 480, (d) 240, (e) 120, and (f) 60 expansion coefficients.
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Θ
0 ¼ sign Θð Þ lnð1þ 10n Θj jÞ; (27)

where Θ and Θ′ are an initial and log-transformed values of a morphometric variable,
respectively; n = 0 for elevation and nonlocal variables, n = 2,. . .,18 for local variables.
Such a form of logarithmic transformation considers that dynamic ranges of some
topographic attributes include both positive and negative values. Selection of the n

Figure 5. Residuals between the DEMs reconstructed with the Fejér summation and the initial DEM.
Reconstructions were done with: (a) 2880, (b) 960, (c) 480, (d) 240, (e) 120, and (f) 60 expansion
coefficients.
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value depends on the size of a study area (Florinsky 2012, p. 134); we used n = 6 for kh
and kv mapping (Figures 3, 4, and 7).

Data processing was done by the software MATLAB R2008b (© The MathWorks, Inc.
1984–2008). Statistical analysis was carried out with the software Statgraphics Plus 3.0 (©
Statistical Graphics Corp. 1994–1997). Mapping was conducted with the software
LandLord (Florinsky 2012, pp. 315–316).

To test the efficiency of themethod in terms of the speed of data processing, we specially
used an office computer with very modest capabilities (Intel Celeron, CPU G460, 1.80 GHz,
1.95 GB RAM) with MS Windows XP 32-bit edition. The test results are presented in Table 2.

Figure 6. Quantile–quantile plots for elevation (left), kh (center), and kv (right) values, initial (Y-axis)
and reconstructed (X-axis) with: (a) 2880, (b) 480, (c) 240, and (d) 120 expansion coefficients. The
greater the distance between points and the diagonal line, the greater the difference between
reconstructed and initial DTMs.
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5. Results and discussion

A set of elevation maps reconstructed with different number of expansion coefficients
(Figure 2) demonstrates a process of DEM generalization, from its zero level (Figure 2(a))
to the maximum one (Figure 2(f)). Similarly, a set of kh and kv maps calculated from
reconstructed DEMs (Figures 3 and 4) shows kh and kv generalization, from the zero
levels (Figures 3(a) and 4(a)) to the maximum ones (Figures 3(f) and 4(f)). Generally, the

Figure 7. Examples of curvature maps – kh (left) and kv (right) – derived from the reconstructed
DEMs without the Fejér summation using: (a) 2880, (b) 240, and (c) 120 expansion coefficients.
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lower the number of expansion coefficients used to reconstruct a DEM, the more
smooth and simplified maps obtained.

On the initial kh and kv map, one can find numerous flow structures descending from
the Kenyan highlands to the coast of the Indian Ocean (Figure 3(a)) as well as scarps and
terraces of the mountainous topography (Figure 4(a)). However, these non-generalized
maps are overloaded with information. It is hard to see any generalization effect on

Figure 8. Residuals between the DEMs reconstructed without the Fejér summation and the initial
DEM. Reconstructions were done with: (a) 2880, (b) 960, (c) 480, (d) 240, (e) 120, and (f) 60
expansion coefficients.
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maps calculated with 2880 expansion coefficients (cf. Figures 2(a,b), 3(a,b) and 4(a,b)).
Readable and interpretable kh and kv maps were derived with 480, 240, 120, and 60
expansion coefficients: one can clearly see flow structures (Figure 3(c,d)), scarps, and
terraces (Figure 4(c,d)), approximately north-striking large structures associated with
elements of the Kenyan and Gregory rifts (Figure 4(e,f)), as well as some patterns
probably connected with the evolution of the Kenya Dome (Figure 3(e,f)).

To avoid misunderstanding, we should stress that poor readability and interpretability
of the low-generalized maps (Figures 3(b) and 4(b)) are associated with the particular
scale of map representation. Zooming the low-generalized maps, it is possible to see
complex systems of flow structures and other topographic features. These maps are not
noisy; they are oversaturated with information, like the non-generalized maps of curva-
tures calculated by the traditional finite-difference method (Figures 3(a) and 4(a)).

The decrease in the number of the expansion coefficients in DEM reconstruction can
act as high-frequency filtering. However, the visual analysis of the initial models of kh
and kv (Figures 3(a) and 4(a)) shows that the initial DEM does not include a pronounced
high-frequency noise, which would inevitably be increased after calculating derivatives
and curvatures (Florinsky 2002). An example of the high-frequency filtering of a noisy
DEM using our method can be found elsewhere (Florinsky and Pankratov 2015).

It is well-known that orthogonal polynomial approximation produces boundary
effects, which cannot be completely eliminated. In our case, these effects appear as
narrow linear artifacts at the boundaries of kh and kv maps (Figures 3(e,f) and 4(e,f)). A
problem with boundaries of curvature maps also arises using the finite-difference
algorithms: it is impossible to estimate the partial derivatives for boundary columns
and rows of a DEM (Figures 3(a) and 4(a)), because they are estimated for the center
point of the moving window (Evans 1979, Zevenbergen and Thorne 1987, Shary 1995,
Florinsky 1998, 2009, Minár et al. 2013).

The analysis of Figure 5 shows that maximum residuals of the approximation pre-
dictably occur in areas of the contrast mountainous topography with dramatic elevation
changes. However, an estimation of the approximation accuracy can be relevant only for
DEMs reconstructed with a high number of expansion coefficients, for instance, with the
set of 2880 coefficients (Figure 2(b)). In this particular case, the residuals range from –73

Table 2. The average processing time to reconstruct a DEM and to calculate a
morphometric variable depending on the number of expansion coefficients.

Number of expansion coefficients

Processing time, seconds

DEM reconstruction Morphometric variable calculation

50 2.65 2.70
100 2.70 2.80
250 2.90 3.02
500 3.03 3.60
1000 3.78 5.26
1500 5.08 7.81
2000 6.59 11.14
2500 8.27 15.47
3000 10.74 20.70
4000 16.61 32.15
5000 23.68 –
6000 32.77 –
6500 38.40 –
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to 146 m (Figure 5(a)), while the original elevation ranges from 206 to 4774 m (Figure 2
(a)), that is, the range of calculation errors (219 m) is 4.8% of the elevation range in the
initial DEM (4568 m). At the same time, the high residual values are typical for relatively
small areas adjacent to the scarps of the Great Rift Valley, Mount Kenya, and the like. For
most of the territory, the residuals are 0.1 ± 8.8 m (Figure 5(a) and Table 1). This value
can be considered a permissible computational error, which is comparable with the
vertical error of the initial DEM. Indeed, the land portion of the SRTM30_PLUS is based
on the SRTM30 DEM (Becker et al. 2009) characterized by the absolute vertical error of
5–9 m for this part of Africa (Farr et al. 2007).

It is clear that the lower the number of expansion coefficients used to reconstruct a
DTM, the greater the residual between a reconstructed DTM and the initial one (Figures
5 and 6). However, we purposely generalize the topographic surface reducing the
number of expansion coefficients, so the approximation accuracy problem becomes
irrelevant for generalized DEMs. In this case, the key criterion is a sufficient plausibility of
reconstructed maps.

Figures 7–9 and Table 1 demonstrate the role of the Fejér summation in the devel-
oped method. On the one hand, although both approximation versions – with and
without the Fejér summation – are characterized by a distinct monotonic convergence,
the convergence rate of the Fejér-free approximation is markedly increased (Figure 9
and Table 1). For example, the residuals for the DEM reconstructed with the set of 2880
expansion coefficients without the Fejér summation range from –21 to 36 m (Figure 8
(a)), that is, the range of calculation errors (57 m) does not exceed 1.3% of the elevation
range in the initial DEM (4568 m). Moreover, the residuals are ±1.8 m for most of the
territory (Figure 8(a) and Table 1) that is less than the absolute vertical error of the SRTM
DEM, 5–9 m, for this part of Africa (Farr et al. 2007). For the set of 7000 expansion
coefficients, the residuals for the DEM reconstructed without the Fejér summation range
from –11 to 15 m, that is, the range of calculation errors does not exceed 0.6% of the
elevation range in the initial DEM. In this case, the residuals are ±0.8 m for most of the
territory (Table 1). Thus the Fejér-free approximation can lead to much better results in
terms of elevation errors compared with the approximation with the Fejér summation.

Notice that zero residuals are impossible to achieve because the polynomial series
can theoretically completely converge to the original function on the Gaussian quad-
rature grid, which does not coincide with the DEM grid (these are errors of interpolation
from the Gaussian quadrature grid to the DEM grid). Furthermore, there are unavoidable
rounding errors of the computations.

On the other hand, pronounced ripple-like artifacts emerged on the maps of hor-
izontal and vertical curvatures derived from the Fejér-free approximated DEMs (i.e., in
the eastern, relatively flat part of the study area, see Figure 7(b,c)). Even for the set of
2880 expansion coefficients, one can see minor ripples in the north-eastern corner, the
most flat portion of the study area (Figure 7(a)). These are oscillatory artifacts typical for
approximations based on orthogonal polynomials. Classical boundary effects are also
clearly visible on these maps. It is obvious that the reconstructed DEMs also include
these oscillations, but they are weakly expressed and therefore cannot be seen on the
elevation maps (but can be found on the residual maps, see Figure 8). Differentiation
amplifies their manifestation on the curvature maps (Florinsky 2002). At the same time,
these artifacts do not appear on the curvature maps if the DEM approximation included
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the Fejér summation (cf. Figures 3(b,d,e) and 4(b,d,e) with Figure 7). Thus the Fejér
summation, suppressing this computational noise, is the absolutely necessary stage of
the described method.

From the test results presented in Table 2, it is clearly seen that the time for the
DEM reconstruction and calculation of a local morphometric variable depends non-
linearly on the number of expansion coefficients utilized. In a small number of
expansion coefficients (≤500), roughly the same time is used for both the DEM
reconstruction (Equations 22–24) and the morphometric variable calculation
(Equations 22, 23, 25, and 26). With increasing number of expansion coefficients
(>500), the time for the morphometric calculation is sharply increased: it is about
twice the time for the DEM reconstruction. It is obvious that solutions of Equations
(24 and 26) require essentially different computing resources (computer memory).
Indeed, processing the Kenyan DEM with the computer mentioned in Section 4, we
were able to reconstruct DEMs and calculate morphometric models using up to 6500
and 4000 expansion coefficients, respectively. To work with larger sets of expansion
coefficients, we used a more powerful computer.

6. Conclusions

The results demonstrated a good performance of the presented method. It can be
utilized as a universal tool for analytical treatment of DEMs including DEM global
approximation, denoising, generalization, as well as calculation of the partial derivatives
of elevation and local morphometric variables.

At the moment, we implemented the calculation of the first, second, and third partial
derivatives of elevation. This means that all presently known local morphometric vari-
ables are easily computed. Partial derivatives of higher orders are not currently used in

Figure 9. Convergence rate for the DEM approximation with and without the Fejér summation in
terms of the residual range.
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geomorphometry. However, if necessary, it is trivial to implement the calculation of
partial derivatives of any order within the framework of the proposed method.

Notice that the method provides a natural solution for another mathematical pro-
blem of digital terrain modeling: landscape segmentation, or landform classification. This
is due to the fact that common classification schemes (e.g., the Gaussian, Efremov–
Krcho, and Shary classifications – Florinsky 2012, pp. 23–30) are based on signs and
values of local morphometric variables (see a review – MacMillan and Shary 2009).

The developed method is universal because it combines key mathematical proce-
dures of digital terrain modeling. The method is spectral because a set of expansion
coefficients by an orthogonal basis is called ‘spectrum’ in functional analysis. The
method is analytical because: (1) a single analytical function defines elevations within
the entire study area; and (2) each calculated partial derivative of elevation is defined by
a single analytical function for the entire study area. This is the fundamental difference
of the presented method from the traditional techniques for DEM processing, in which
one uses a DEM – a discrete function of elevation – to calculate discrete functions of the
partial derivatives.

The developed method can become an effective alternative to common techniques
of DTM processing. A further development of the method may include: (1) its general-
ization to other polynomial bases, such as the Fourier, Legendre, Bernstein, and spherical
polynomials; (2) their comparative analysis in terms of efficiency and accuracy; (3)
implementation of a fast recurrence algorithm (Pankratov et al. 2011) for calculating
the expansion coefficients; (4) development of a technique to evaluate method’s accu-
racy using metrics of numerical analysis (e.g., condition number) or statistics (e.g., root
mean square error of a function of measured values); (5) comparison of the developed
method with traditional techniques applied in digital terrain modeling; and (6) imple-
mentation of algorithms for solving differential equations and integral calculation, which
can be used to compute nonlocal and combined morphometric variables (e.g., specific
catchment area – Gallant and Hutchinson 2011).
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