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Abstract—The generalized spectral-analytical method as a new approach to the processing of information
arrays is stated. Some theoretical foundations of this method and its applications in different experimental
data analysis problems are given. The method is based on the adaptive expansion of initial arrays in the func-
tional bases belonging to the classical algebraic systems of polynomials and functions of continuous and dis-
crete arguments (Jacobi, Chebyshev, Lagrange, Laguerre, Kravchuk, Charlier, and other polynomials). This
approach combines analytical and digital data-processing procedures, thus providing a basis for the universal
combined technology for the processing of information arrays. An appreciable part of this review is devoted
to video data analysis and pattern-recognition problems. In addition, some relevant applications of this
method in biomedical and bioinformation data analysis, recognition, classification, and diagnosis problems
are described.
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INTRODUCTION
The trends toward larger volume of information

arrays and stricter requirements as to precision and
completeness of data processing under time con-
straints cause the need for information systems with
ever-greater computational capacity. The continuous
improvement of computer performance speed leads to
increased information processing cost and does not
always provide the required data-processing condi-
tions. The problem of creating new methods, which
would not require an obligatory increase in the capac-
ity of computational complexes, but would still pro-
vide the specified precision and speed of processing,
remains topical. 

The submitted review describes the results of
search for possible ways to combine digital calcula-
tions and analytical transformations for the purpose of
increasing the precision and speed of computations.
These results preserve the demonstrativeness of ana-
lytical methods and the possibility to have an analyti-
cal representation of the sought parameters and esti-
mates at every step of calculations.

The successful implementation of a combined
data-processing method directly depends on the form
used for the description of the initial digital arrays.
Analysis [1–3] has demonstrated that the most com-
pletely formulated conditions correspond to the
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method based on the approximation of data with trun-
cated orthogonal series with the use of classic orthog-
onal polynomials and functions of continuous and
discrete arguments [2]. The application of approxima-
tion results in various analytical transforms, making
the classical orthogonal bases a promising tool for the
operative analytical processing of digital data in on-
line and off-line systems (on-line and off-line analyt-
ical processing, OLAP) and the creation of data-min-
ing systems.

The theory of classical orthogonal bases is an
extension of the theory of Fourier series to algebraic
polynomials. Their distinctive feature is that most for-
mulas specifying certain bases have parameters whose
change may appreciably vary the properties of the
orthogonal polynomials and weight functions com-
posing a certain orthogonal basis. The latter circum-
stance is especially important in approximation-opti-
mization problems, when the specified precision must
be provided by the shortest truncated orthogonal
series. The application of special adaptive procedures
provides the solution of this problem on a computer in
an automatic mode.

Spherical functions are an important class of spe-
cial functions, which are closely related to the classic
orthogonal polynomials. They appear during the solu-
tion of a wide variety of problems, e.g., when the
Laplace’s equation is solved in spherical coordinates.
Since the continuous solutions of the Laplace’s equa-
tion are called harmonic functions, the spherical func-
tions are also called spherical harmonics. The need for
638. © Pleiades Publishing, Ltd., 2019.
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their use in the problems considered here is associated
first of all with the approximation of signals and func-
tions on a sphere. A number of applications leading to
this result are considered below.

Hence, the adaptive approximation of data in the
bases of classical orthogonal polynomials and other
special functions underlies the below-proposed tech-
nology for the description, processing, and analysis of
information arrays. The set of spectral features
adjusted to a class of signals, objects, or systems leads
to the efficient procedures of recognition and classifi-
cation in a number of the below-considered applica-
tions. The proposed generalized spectral-analytical
method (GSAM) for the processing of information
arrays provides the possibility to rationally combine
the advantages of both digital calculations and analyt-
ical derivations. Its computational procedures can be
efficiently implemented on both sequential and paral-
lel computers.

The problem of the diagnosis of biomedical sys-
tems usually entails difficulties typical for this field of
studies. Among them are the initial parametric com-
plexity of the system, with the resulting incorrect for-
mulation of the inverse problems, and the presence of
noise, which decreases the reliability and precision of
the parametric identification of the system.

The primary processing of data incorporates the
selection of areas with a digital biomagnetic signal
characterizing different types of activity. To classify
the type of a brain biomagnetic activity signal, the
transition to the spectral spherical harmonic represen-
tation of the spatial field picture is performed. The use
of signal expansions of this kind for practical system
diagnosis problems is based on the appreciable sensi-
tivity of the expansion harmonics to the values of the
estimated parameters.

An interesting GSAM application field is computer
vision, more precisely, contour-analysis-based pattern
recognition. The silhouettes of objects are the most
informative part of the visible world, and it is believed
that our primitive ancestors had no color vision, and
shapes were the only source of visual information [4].
Nevertheless, bitmap analyses and similarity tests will
never be “yes–no” questions due to the noise effects:
objects of the same shape will be similar, but will never
be identical in each pixel. For this reason, the similar-
ity of bitmap images is estimated as the amount of pix-
els in which the images coincide with each other [5].
Many applications are not suitable for brightness-
based comparison, when we admit more complicated
deformations of contours, such as inflection. Some
researchers begin to consider silhouettes as contours,
and this means that they are merely two-dimensional
closed lines, so we obtain naturally sorted boundary
points, which appreciably simplifies the comparison
of a pair of rows instead of inner pixels. For example,
if there exist square objects to be compared, and their
dimensions are 100 × 100, we must compare 10000
PATTERN RECOGNIT
pairs of pixels when following the brightness-based
approach, whereas the contour-based method
requires only 400 points, or 25 times less data for cal-
culation. We can also accelerate the comparison much
more greatly with the use of data decimation [6]:
retaining only every tenth boundary point, we obtain
merely 40 points and thereby decrease the speed by
10 times. When doing this, we must understand that
we do not compare the silhouettes of objects any
more, but compare certain polygons with 40 apices
and hope that these polygons are rather good for the
description of the initial shapes. The resulting bound-
ary curve has been de facto a representation standard
for the contour-based approach for decades, but we
use here the other boundary data compression method
to demonstrate how to estimate the similarity of
shapes without the need for reverse data decompres-
sion. The feasibility of calculations in the frequency
region is one of the most important advantages of
GSAM. The authors [7] have demonstrated the tech-
nique of calculations in the spectral region, when there
is a need for the derivative or integral of spectral func-
tions or algebraic operations over them.

Another GSAM application field is bioinformatics.
A variety of algorithms and software for the computer-
aided estimation of DNA fragments and derivatives
(proteins, RNA) have been developed to date [8–11].
However, the capabilities of computer-aided genetic
data analysis have lagged behind the quickly develop-
ing experimental facilities in contemporary biology
over the last 20 years: most algorithms for the process-
ing of genetic sequences are based on several basic text
information-processing principles, such as Hamming
or Levenshtein edit distances. The temporal complex-
ity of the algorithms is appreciably non-linear, and the
main factor of deceleration in the comparison of sim-
ilar genetic data are point mutations (such as the
replacement, removals, or insertions of letters), whose
correction increases the time of analysis. For large
compared fragments, it is natural to presume a greater
number of mutations and, as a consequence, to
observe an abrupt decrease in the efficiency of the
algorithms on long sequences (of more than 10000).

The suggestion to use the spectral approach to the
problem of searching for repeats in genomes was first
made in the works [12, 13], in which the ideas to use
the methods of continuous mathematics for the anal-
ysis of character sequences were put forward. It was
proposed to use the GC-content curves characterizing
the force of binding in the double DNA helix as a
functional analogue of the genome sequence.

The following stage in the development of this
method was the construction of a similarity dot matrix
on the basis of the decision-making rule for the recog-
nition of inexact repeats [14]. The estimation of peri-
odicity in a GC-content curve was proposed for
searching for extended tandem repeats [15]. As an
application of the developed methods, they were used
ION AND IMAGE ANALYSIS  Vol. 29  No. 4  2019
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to reveal some extensive repeats in the genomes [16,
17], thus posing the problem of automating the search
for repeated sequences of this type.

In the course of further studies, the method gained
a number of improvements [18]: the recognition of
repeats was made more stable via the introduction of
an additional GA-content curve, making the informa-
tion description of sequences more complete; an
improved decision-making rule invariant to the selec-
tion of a scale was derived; the approximation condi-
tions such that the tandem repeats were mapped on
the dot matrix in the form of square templates were
determined, thus providing the possibility to automate
the recognition of repeats over a sample and reveal a
new repeat in the genome [19]; and the algorithm of
searching for the inverted repeats in the space of
expansion coefficients was constructed to present the
first results of comparison over the entire genome.

The theoretical foundations and algorithmic
implementation of the spectral-analytical method for
the recognition of repeats in character sequences were
further proposed in this work. The theoretical sub-
stantiation is based on the theorem about the equiva-
lent representation of a character sequence with the
vector of continuous characteristic functions [20]. The
comparison of truncated characteristic functions is
performed using the standard metrics in the Euclidian
space of coefficients for the Fourier series expansion
of orthogonal polynomials. An essential specific fea-
ture of this approach is the ability to compare the
repeats in different scales. Another important feature
is the possibility of efficient data parallelization. When
developing the algorithm, we preferred the scheme of
calculations with a minimum number of memory ref-
erences, thus implying repeated calculations and on-
demand estimations. In this paradigm, the algorithm
for the calculation of orthogonal polynomial expan-
sion coefficients with the use of recurrence equations
was proposed. It has been shown that the algorithm for
the calculation of orthogonal polynomial expansion
coefficients can be efficiently vectorized by means of
calculations with a fixed vector length. Parallelization
and vectorization were implemented using the stan-
dard Open MP extension of the C/C++ language. The
developed method can be efficiently scaled depending
on the problem parameters and the number of proces-
sor cores in shared memory systems. As a result, the
SBARS software [21] for searching for inexact repeats
of different types (direct, inverted, or tandem) in
genomes was developed and compared with other
tools [22–25]. Moreover, a unique web service for the
global alignment of extensive sequences was also cre-
ated [26, 27].

Another problem of bioinformatics is the study of
structural motifs in protein molecules, being very top-
ical and important for the understanding of the regu-
larities in the packing of a polypeptide chain into spa-
tial structures and the knowledge of all the possible
PATTERN RECOGNITION AND IMAGE ANALYSIS  V
conformations of the studied motifs in the polypeptide
chain as a whole. The acquired knowledge is necessary
for the establishment of structural organization regu-
larities and may be very useful when solving the prob-
lems of the automatic recognition and prediction of
different structural motifs in proteins. The compre-
hensive study of the supersecondary structures of pro-
tein molecules is caused by the fact that their struc-
tural motifs have unique spatial polypeptide-chain
packings, which can play a crucial part in the protein-
folding process.

There also exist known structural motifs, which are
composed of two and more secondary structure ele-
ments and have unique spatial polypeptide chain
packings, such as α-α corners, α-α hairpins, L- and
V-shaped structures, etc. [28–31]. These motifs are
formed by two α helices, which are arranged in the
polypeptide chain one after another, linked to each
other by means of constrictions, and represent com-
pact spatial structures. It is known that α helices in
proteins are closely packed. The most compact pack-
ing of two α helices is attained in the case of antiparal-
lel, perpendicular, and so-called oblique slanted ori-
entation between the helices [32–35], and the men-
tioned supersecondary structures provide some
examples of such a packing.

METHODS
Classical Orthogonal Systems

We shall further be interested in the algebraic
orthogonal systems (bases) of polynomials of continu-
ous and discrete arguments and some other related
functional systems. First of all, the bases of one vari-
able will be considered, but some problems require the
use of functional systems depending on a greater num-
ber of variables.

The considered functional systems are well studied
in the mathematical literature and satisfy a number of
important requirements regarding the construction of
an analytical description of general form for informa-
tion arrays. The orthogonal bases of a continuous
argument (Table 1) represent three groups of bases
related by the formulas and properties generating
them. The first group incorporates orthogonal bases,
which are specified by the general Jacobi formula and
defined on the interval [–1, 1]. This formula has the
parameters α and β, whose certain values in different
combinations lead to both the known orthogonal sys-
tems and the other possible systems. Thus, if the
parameters , the spherical orthogonal Leg-
endre polynomials can be derived from the formula
specifying the Jacobi basis up to a constant.

At , the general formula gives the
expression determining the orthogonal Chebyshev
polynomials of the first  and second

 order, respectively. At
, , the ultraspherical

α = β = 0

α = β = ±0.5

α = β = −( 0.5)
α = β =( 0.5)
α = β = σ −( 0.5) σ > −( 0.5)
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Table 1. Orthogonal classic bases of a continuous argument
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orthogonal polynomials (Gegenbauer polynomials)
are obtained. When the values of α and β are randomly
selected (their admissible range is ,

) in any combinations of α and β, it is
possible to obtain a wide variety of orthogonal bases,
which belong to the classical ones and have certain
common properties, but different formulas. The sec-
ond group is formed by the orthogonal Sonin–
Laguerre bases (generalized Laguerre polynomials).
They are defined on the interval  and have the
parameter α in their formulas. At , the formula
defines the well-known Laguerre polynomials. Speci-
fying α within a range , it is possible to
obtain a set of orthogonal Sonin–Laguerre bases,
which differ from each other in the form of the poly-
nomials. The family of orthogonal bases belonging to
the Sonin–Laguerre group is frequently modified by
introducing the scaling coefficient m. Finally, the last
group is formed by the orthogonal Hermite basis spec-
ified on the entire number axis . This
basis is usually applied in statistical studies. The for-
mula specifying this basis does not contain any param-
eters. For this reason, this group is represented by the
only orthogonal Hermite basis.

The common properties of the analytical orthogo-
nal polynomials of a continuous argument from the

− < β < ∞( 1 )
− < α < ∞( 1 )

[ ]∞0,
α = 0

− < α < ∞( 1 )

−∞ < < ∞( )x
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group of classical ones can be briefly reduced to the
following [2].

(1) Any three sequential orthogonal polynomials
from the same basis are related to each other by a lin-
ear equation [36]; i.e., there exists a recurrence for-
mula, which provides the possibility to use two known
polynomials to uniquely determine the third polyno-
mial.

(2) The functions  belonging to the classical
orthogonal systems satisfy the hypergeometric differ-
ential equation like , where
A(x) and B(x) are independent of n, and  is indepen-
dent of x.

(3) The functions  also form an orthogonal
system of polynomials [4].

(4) The generalized Rodrigues formula ϕn(x) =

, where  is a constant, and  is

a polynomial, whose coefficients are independent of
n, occurs. The inverse proposition is also true. Any of
the last three properties characterizes classical orthog-
onal polynomials. In other words, any system of
orthogonal polynomials which has one of these three
properties can be reduced to the family of classical
ones.

ϕ ( )n x

+ + λ =( ) '' ( ) ' 0nA x y B x y y
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n
n
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5) For all orthogonal polynomials from the family
of classical ones, the classical weight function  is
non-negative and integrable on the interval .

Spherical Functions
Spherical functions are an important class of spe-

cial functions, which are closely related to the classical
orthogonal polynomials. They appear in the solution
of a broad spectrum of problems, e.g., when the
Laplace’s equation is solved in spherical coordinates.
Since the continuous solutions of the Laplace’s equa-
tion are called harmonic functions, the spherical func-
tions are also called spherical harmonics. The process
of finding the solution of the Laplace’s equation

 in the spherical coordinates  alongside
the explicit expression of spherical functions and the
properties of the latter are detailed in the works [37–
40].

The spherical functions have the general form

where the function  is defined as

The functions  are Legendre functions or
polynomials and are also called zonal harmonics. The
functions  are called associated Legendre func-
tions. Since , the expression for

 will be rewritten as

where the functions  are named
tesseral harmonics, seemingly, after one of the types of
dice games known in Ancient Rome. At m = l, tesseral
harmonics are called sectoral harmonics.

Some relations of orthogonality also take place.
Each zonal harmonic  is orthogonal to the polyno-
mial depending on the argument  raised to a
lower power. The same is also true for the surface har-
monics raised to identical powers; any pair of

, , ,  is orthogo-
nal, and the integral of their product over  becomes
zero except , when the integral of a squared har-
monic is taken. The linear independence of the stan-
dard (normalized) harmonics  can be easily
proven [38].
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As for the calculation of the associated polynomials
, it is possible to use the explicit formula [38–40],

but the very high values of n necessitate operations
with very large numbers, thus leading to precision loss,
arithmetic overflow, and other inconveniences. For
this reason, it makes sense to use the recurrence rela-
tions for the associated Legendre polynomials [41, 42]

The system of spherical harmonics is complete in
the space of quadratically integrable functions

(hereinafter, surface harmonics are understood
to mean the real and imaginary parts of the function

).
Hence, if a certain function  is quadratically

integrable on a sphere, it can be expanded in a series of
spherical harmonics as

where  are the expansion coefficients to be
determined.

Taking into account the approximate expression,
we obtain

Taking into consideration the property of orthogo-
nality inherent in the spherical harmonics, the expan-
sion coefficients ,  can be calculated by the for-
mulas of integrating the product of a function and a
spherical harmonic on a sphere with consideration for
the orthogonality and normalization conditions.

Generalized Spectral-Analytical Method
The key feature of the proposed method consists in

that the process of signal processing represents two
interrelated, but largely independent stages. The
essence of the first stage is to find the compact analyt-
ical description of a studied signal with a required pre-
cision in the process of calculations on a computer. At
the second stage, the found analytical descriptions are
used to derive the analytical formulas necessary to cal-
culate the estimates of the sought parameters and
characteristics in the general form. To simplify the
process of analytical derivations, it is necessary to
strive to a known and constant structure for the analyt-
ical descriptions of signals of different nature. The
resulting analytical expressions are either input into a
computer before the process of signal processing is
started in a programmable fashion or are programmed
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Fig. 1. Functional scheme of the generalized spectral-analytical method. 
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in the form of a hardware special calculator (the cre-
ation of a similar device provides the possibility to
appreciably optimize and accelerate such calculations
at the signal spectrum calculation stage [43]).

The high efficiency of the described computational
scheme will be determined by the fulfillment of the
following principal provisions. The process of the
automatic description of input signals must be com-
pletely automated and have adaptive procedures,
which would provide the required precision with the
expressions of minimum complexity. The representa-
tion of the studied signals in the form of truncated
orthogonal series is characterized by the fact that the
structure of such descriptions always remains
unchanged, and the meaningful information about
these signals is contained in the expansion coeffi-
cients, which are in turn linearly independent func-
tionals. The mentioned circumstances provide the
development of a procedure for the complete process-
ing of signals in the space of expansion coefficients in
a “compressed” form, thus promoting an appreciable
increase in the precision of the found estimates and a
decrease in the volume of computational operations.

The use of expansion coefficients as initial values
for the solution of inverse ill-posed problems, in par-
ticular parametric identification and diagnosis,
increases the precision of estimates for the sought
parameters and does not require any additional regu-
larization. Moreover, the stability of the solutions is
retained under the conditions of interferences overlap-
ping the useful signal due to the operation of integra-
tion in the calculation of the expansion coefficients.
PATTERN RECOGNIT
One of the important features of this method is the
possibility to choose a data description method via the
adequate selection of basis functions from the above-
described orthogonal polynomials and functions. This
problem is solved by implementing the selection algo-
rithm based on the tool of signal shape coefficients or
shape vectors, which are described in [43, 44]. The
general GSAM scheme is shown in Fig. 1. The layout
of the distributed system for the digital processing of
signals and images is illustrated in Fig. 2.

APPLICATIONS
Analysis, Processing, and Classification of Magnetic 

Encephalography (MEG) Data

The primary processing of data includes the selec-
tion of areas with a digital biomagnetic signal charac-
terizing different types of activity. To classify the type
of a brain biomagnetic activity signal, the transition to
the spectral spherical harmonic representation of the
spatial field picture is performed. The use of signal
expansions of this kind for practical system diagnosis
problems is based on the appreciable sensitivity of
expansion harmonics to the values of the estimated
parameters.

It is known [45] that the typical case encountered
in the MEG records for patients suffering from Par-
kinson’s disease is the spontaneous switches between
pathological and normal activity seemingly due to the
activation and deactivation of brain excitation areas.
Externally, this is exhibited as sporadic attacks of
tremor or hallucinations. For this reason, the main
problem is to classify the type of activity and select the
ION AND IMAGE ANALYSIS  Vol. 29  No. 4  2019
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Fig. 2. Layout of the distributed system for the digital processing of signals and images: numerical block + AE (arithmetic
expander), which implement the transition to the spectral representation of data. GUI is the graphical user interface, AL is the
approximation library, AT is the approximation toolbox. Software implementations ADAP, Spectmate®, and SpectralRevisor®. 
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time moments to solve the problem of localizing the
sources corresponding to the relevant type of activity.
Time moments for the solution of the inverse problem
are selected with the use of spectral classification
results.

Here, the activity type classification approach
using the spectral representation of a signal with
orthogonal functional expansions [46, 47] is devel-
oped. In this case, the attribute space elements are the
vectors of Fourier coefficients. The signal classifica-
tion criterion is the source corresponding to this type
of signal. To exclude the effect of source amplitude
changes on the picture of the magnetic induction (MI)
distribution over the brain case surface, the records
were normalized by scaling (all the MI values in the
channels of the records were reduced to the average
absolute value over the channels):

where  is the initial MI values in the jth channel

at the time moment .

The method proposed for the classification of a sig-
nal activity type is the following:

(1) The vectorization of MEG data is performed.
Their representations are obtained in the spherical coor-
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dinate system in the form of a series in orthonormal-

ized spherical functions  = .

The existence of a simple analytical relation between
the expansion coefficients in the case when the trans-
form function SO(2) is applied to the argument pro-
vides the possibility to construct the fast procedure
for the enumeration of functions in a given class.

Correspondingly, the initial function  is

defined by the formula  =

, where the expansion coeffi-

cients are  = .

(2) The selection of the most informative harmon-
ics. The requirement of a maximum value for the ratio
of the mathematical expectation to the variance

 is considered as a MEG record-selec-

tion criterion.

(3) The removal of noise from the selected har-
monics. Discrete wavelet transform is used. The Haar
wavelet is used as a parent wavelet. This wavelet forms
an orthonormalized basis, and has the property of
symmetry.

(4) Cluster analysis is performed by the iterative
method of k-means clustering. The found time
moments at which the abnormal component exists
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Table 2. Classification of MEG signals

Signal 

name

Signal 

type

Revealed biomagnetic 

signal features

Source 

localization

A Abnormal Beginning or termina-

tion of increased activity

Cerebellum

B Abnormal Intermediate phase, 

change of the increased 

activity source

Cerebellum, 

stem

C Abnormal Biomagnetic activity 

peak, highest signal 

amplitude

Black substance

D Normal No specific features Generally, cere-

brum cortex
become the initial data in the problem of localizing the
brain areas associated with the considered pathology.

(5) The localization of the increased biomagnetic
activity source.

The classification of a signal type by cluster analysis
was performed depending on the spectral characteris-
tic of the signal. In total, four types of signals, such as
A, B, C, and D, were revealed (Table 2).

The results of localizing the sources of increased
activity in the recorded magnetic encephalogram con-
firm the existing medical opinion about the relation-
ship of Parkinson’s disease to damage to subcortical
brain areas. In particular, there exist some data on the
relationship of this disease to the death of melanin-
containing neurons in one of the subcortical brain
ganglia—black matter [48, 49]. The higher level of
movement control is localized in the cerebrum cortex,
the basal ganglia, and the cerebellum. In this connec-
tion, it is interesting that the beginning of a Parkinson-
ism attack is associated with one of the most important
brain areas, i.e., the cerebellum. Although the cerebel-
lum is only 10% of the brain volume, it accommodates
more than half of all the central nervous system neu-
rons. It not only provides the continuous control over
movement activity, but also participates in the imple-
mentation of cognitive encoding and memory [48]. 

The proposed computational technology is classi-
fied among the combined numerical-analytical
approaches. It combines computer-aided (digital)
data-processing methods with the analytical deriva-
tions and transforms in the spectral representation (in
the space of Fourier signal coefficients). The formal
core of this technology is the generalized spectral-ana-
lytical method (GSAM).

The description is based on the expansion of a
studied signal in the full system of classic orthogonal
polynomials and functions (Jacobi, Chebyshev, Leg-
endre, Laguerre, Gegenbauer, and other polynomi-
als). In this context, the main adaptive procedure is
the selection of an optimal basis for the derivation of
an optimal spectral representation. In this case, the
PATTERN RECOGNIT
process of the analytical description of input signals is
completely automated. The used adaptive procedures
provide the required precision of description with
expressions of minimum complexity. As a result, the
compact description and constancy of its structure is
attained, and this is an essential factor for the further
analytical transforms and derivations. Adaptation of
the description appreciably facilitates the necessary
analytical transforms and derivations in the further
processing of signals. The execution of adaptive proce-
dures promotes the efficient compression of the vol-
ume of the information array.

The expansion into an orthogonal series is accom-
panied by the orthogonal projection of unknown sig-
nals onto the known functions from the selected basis.
The thus-found expansion coefficients characterize
the degree of coincidence between the signals and the
known orthogonal functions on the considered inter-
vals.

The spectral methods for the analysis of biomag-
netic data on the basis of the generalized spectral-ana-
lytical approach were implemented. The transition
from spatiotemporal MEG records to the spectral rep-
resentation provides the possibility to appreciably
decrease the volume of processed data and increase
the precision and stability of calculations. The further
improvement of the efficiency of the system-state esti-
mates is performed by taking into account the infor-
mativity criteria for the used attributes. As shown by
the calculations for clinical Parkinson’s disease cases,
the precision of the parametric identification of the
system with consideration for the preliminary spectral
classification substantially increases, providing the
source localization precision of 2–5 mm. The results
of MEG analysis performed to study the sources of
induced and spontaneous activity in cases of normal
and pathological biomagnetic activity (Parkinson’s
disease) are in good agreement with the neurophysio-
logical data on the localization of brain functional and
damaged areas in connection with Parkinsonism. In
the latter case, the hypothesis about the relationship
between the progression of this disease and the degra-
dation of melanin-containing neurons in the substan-
tia nigra in the brain stem structures (see Fig. 4) is con-
firmed.

Contour Recognition of Objects

The solution of the contour-recognition problem
on the basis of the Fourier series expansion in har-
monic functions is considered.

Let us note that all objects mapped on a plane have
a boundary line, which in turn can be represented as a
curve S in a certain parametric form with respect to

the conditional time , e.g., as ,

where ,  are the coordinates of the point of
“traversal about the boundary” at time t. Such a rep-
resentation is the absolute path of traversal about an

t { }=( ) ( ), ( )i i iS t X t Y t
( )X t ( )Y t
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Fig. 3. Classification of different activity types in the case of Parkinsonism.
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Fig. 4. Localization of the MEG signal source upon a Par-
kinsonian activity burst.
object, but there exists a good alternative in the form of
“relative paths,” which are less dependent on the coor-
dinate system and the different transforms of an object
on a plane. Thus, if the boundary is described with a
pair of other point motion parameters, e.g., the veloc-

ity  and the path curvature  such a record
will be independent of the transfer and turn of an
object, but these parameters will strictly linearly
depend on the dimensions of the object.

Moreover, generally speaking, it does not matter at
what velocity a point moves along the boundary of an
object in the contour-comparison problem; i.e., the
velocity may be taken equal to a certain constant value

. Indeed, let us presume that we know the
onboard readings from the sensors of a Formula-1
race car on its velocity and the position of its steering
wheel at time moments t, and it is obvious that these

parameters are sufficient to trace the path of this
car with a high precision and thereby to restore the
shape of its race track with a quality sufficient for
unambiguous recognition. However, if the pilot is
required to follow along this track at the same constant

velocity, e.g.,  = 60 km/h, the complete resto-
ration of the track will need only the data on steering
wheel positions (i.e., path curvature data), thus reduc-
ing the overall volume of compared data by two times.

Hereinafter, we assume that all the object contours
considered by us are represented by their curvature

functions , which are defined on the interval 

and expressed by truncated Fourier series

( )iV t ( ),iK t

=( ) constiV t

( )V t

( )K t [ ]0,T
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Let us now assume that it is necessary to estimate

the degree of similarity between two contours by the

available spectral representations, and it is known that

the figures have the same size, and it is possible to

=

π π= + +0

1

2 2
( ) cos sin .

N
i i
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n
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specify the “correct” zero (start) point of traversal
about their closed contour. Under these favorable
conditions, it remains only to estimate their similarity
via the direct comparison of the parametric represen-
tations of these curves, e.g., using the mean-square
deviation

which coincides with the same estimate performed
over a pair of their spectral representations

according to the Parseval equality.

Since these estimates are equivalent, it is simpler to
perform the estimation through the spectral represen-
tations, as this appreciably reduces the volume of cal-
culations due to a decrease in the expansion depth.
Indeed, as known, the function of N counts requires N
spectral coefficients for its precise restoration. How-
ever, for many practical problems, it is sufficient to
have only an approximate representation of functions.
However, it is should be remembered that the sched-
uled thinning of counts (“decimation”) usually gives
worse approximation results than the implementation
of the simplest filter of low frequencies for the Fourier
spectrum with the rejection of the same volume of
data alongside the same set of high-frequency noises.
When performing the comparison of contours, it is
often sufficient to retain only the first 10% of a spec-
trum and, according to Kotelnikov’s theorem, this
corresponds the reduction of count points t by ten
times as well, but leads to more stable results.

For simplicity, the above-described situation
implied that the dimensions of the objects are the
same and the selection of a starting point of the con-
tour is not critical. In actual fact, the difference
between their dimensions and the incorrect choice of
zero points leads to shifts of the compared functions
along the ordinate and abscissa axes, thus leading to
estimates unsuitable for practical use. Generally, it
does not seem difficult to solve the problem of disper-
ancy between the dimensions of objects before the
comparison of their shapes; to accomplish this, it is
sufficient to reduce all the objects to a certain common
(normalized) size. However, the problem of the
unambiguous selection of a starting contour point
seemed to be rather difficult for a long time. The
authors [50] have proposed the alternative amplitude–
frequency representation of a harmonic expansion for
the solution of this problem. Indeed, if the expansion

terms  and  in a spectral series are
united into one wave of the same frequency

, it turns out that their overall ampli-
tude An is not changed at all when a different start

point of traversal about the contour is selected, and

( )
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only the wave phase Wn is changed. Hence, among all

the coefficients of the amplitude–frequency represen-

tation of contours , half are invariant to

the selection of a zero point (namely, ) and, there-

fore, the “weak estimation” of similarity between the
figures may be performed very quickly, e.g., via the
pairwise comparison of the degree of correlation

between the first ten coefficients  for all of the stud-
ied objects. In this case, as shown by practice, good
and stable results can be attained even when the simi-
larity between the objects is evaluated with only one
such “weak estimation,” which can easily be condi-
tioned to the quality of “strong estimation” by involv-

ing the phase components  into the comparison
according to the simple rules described in the same
work. Objects of different nature with their own series
of the first amplitudes are shown below in Fig. 5 to
provide the possibility of estimating the adequacy of
the estimates proposed here on well-known contours.

Recognition of Repeats in Genomes
To adapt the spectral-analytical approach to the

problems of bioinformatics, it was necessary to gener-
alize the notion of a dot matrix. As a result of general-
ization, this approach may be applied to the search for
repeats in any character or functional sequences. For
this reason, the approach is described in the most gen-
eral form with the retention of certain terminology and
examples from the field of bioinformatics.

The method is based on the spectral expansion of
the functions which compose the characteristic
description of a text sequence, in which the following
properties of the functions are important: (1) com-
pleteness and (2) smoothness. The completeness of
description means that the initial sequence can be
restored from the characteristic curves. The property
of smoothness for the change of characteristics is nec-
essary to provide their description with truncated
orthogonal series.

These conditions are satisfied by the content curves
of nucleotide subsets in a window of specified length
along the sequence of a macromolecule. This type of
curve incorporates the well-known GC content curve,
which was studied in bioinformatics. At the same time,
the window size, which is a parameter of such a
description, actually introduces the notion of scale for
a sequence of characters.

In the general case, it is possible to formulate the
following theorem.

Theorem about the expansion of a sequence of
characters: for a random character sequence in an

alphabet  of characters, there exists a sheaf of

 characteristic functions, from which it is pos-
sible to restore the initial sequence, and these func-

tions are discrete and –digital, where  is the scale
parameter.

{ }=( , )n nS A W
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Fig. 5. (Color online) Examples of objects for recognition.
Proof. Let us encode the characters of a sequence
with a numerical vector in the binary number system.

A vector with a length of no less than  will be
required. Let us now consider a sliding window with a

width  and sum up the number of units with a certain
bit for all the sequence characters in this window. Let
the thus-determined function depending on the win-
dow position be called the characteristic sequence
function corresponding to a certain bit in the binary
encoding of characters, as every bit of each character
in the sequence can be restored from the correspond-
ing characteristic function.

Note. The characteristic functions considered as
functions of the beginning coordinate of the summa-
tion window are by definition smoothly changing and

-digital functions.

Further, the characteristic functions composing
the description of a random sequence in turn is sub-

jected to sliding scanning with a window of width .
In practice, the characteristic functions of a sequence

are partitioned into overlapping fragments of length 

with a shift  rather than a step of 1. Afterwards, all the

fragments  considered as discrete functions with
the numbering of samples within the window length
are pairwisely compared with each other on the basis
of a standard metric in a Euclidian space as

To reduce the calculations of the distances between
the fragments, the approximation of characteristic
function fragments with truncated orthogonal series is
used. For this reason, the distance is estimated by the
formula

where  are the coefficients of the first  Fourier

series terms ( ). The use of spectral expansion
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provides the possibility not only to economize on the

calculation of distances, but also to perform the trans-

formations for estimating the inverted and comple-

mentary sequences in the space of expansion coeffi-

cients, thus implying the simultaneous recognition of

all the types of repeats without transforming the

sequence itself.

The decisive rule for the recognition of repeats is a

threshold one: if , where  is a threshold value,

the fragments are considered to be similar, but if ,

the fragments are not similar. If there exist several

characteristic curves composing the complete descrip-

tion of an object, they are simultaneously recognized,

and this results in the logical multiplication of deci-

sion-making rules for each of the characteristic func-

tions. This follows from the fact that the decisive rule

is fulfilled in the region of a minimum metric consid-

ered as a function of the number of fragments. Hence,

the set of minima determines the set of candidates for

repeats. In the case of two attributes, e.g., the GC and

GA curves, the set of repeats is taken as the overlap-

pings between the sets of repeated candidates found

for each of the attributes separately. After these opera-

tions, the comparison results are mapped onto the dot

matrix, whose one point, however, corresponds to the

comparison of two full fragments. The dot matrix is

one of the comprehensive standard representations for

the results of the comparison of two sequences, thus

providing the possibility to map the mutual arrange-

ment of repeats. The generalized dot matrix provides

new opportunities for the alignment of inexact repeats.

For example, it has been shown that an inexact exten-

sive tandem repeat may be mapped in the form of an

ideal square on the dot matrix (Fig. 6). This is attained

via the correct selection of the ratio between the win-

dow sizes  and  and the shift . Based on this

important result, a completely automatized method

for the recognition of tandem repeats was constructed,

and repeats not earlier known were found.

ρ < ε ε
ρ ≥ ε

K W d
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632 MAKHORTYKH et al.

Fig. 6. (Color online) Dot matrix fragment containing a tandem repeat.
The structural scheme composed for this method
as a result of the performed studies is the following:

(1) The preliminary processing of a sequence of
characters or the formation of an initial alphabet, i.e.,
the removal of unnecessary characters and the re-
encoding of sequence characters;

(2) The conversion of the sequence of characters
into the sheaf of characteristic functions on the basis
of the proven theorem;

(3) The conversion of the characteristic functions
into the spectral representation. In contrast to the pre-
vious steps, this stage leads to the irreversible compres-
sion of data;

(4) The spectral comparison of sequence frag-
ments;

(5) The mapping and analysis of the dot matrix for
the recognition of extensive repeats (direct, tandem,
and inverted) and the study of their mutual arrange-
ment; and

(6) The check of repeats by means of alignment
with the use of dynamic programming methods.

Recognition and Study of the Properties of Structural 
Motifs in Protein Molecules

The object of our studies is one of the frequently
encountered structural motifs in homologous and
nonhomologous proteins, i.e., an  corner [38].
This supersecondary structure is formed by two α
helices, which are neighboring in a polypeptide chain,
linked to each other by means of constrictions, and
packed in an orthogonal (crosslike) manner. In pro-
teins,  corners are encountered in the form of a
left-hand superhelix. Their sequences have a certain

α − α

α − α
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location in the chain of hydrophobic, hydrophilic, and
glycine residues.

In this work, the problem of the recognition of
supersecondary structures in globular proteins with
known 3D structures determined by X-ray diffraction
and nuclear magnetic resonance is solved on the basis
of the generalized spectral-analytical method [3, 11].
Using the analytical description of the coordinates of

 atoms in the main chain of a protein globule, the
characteristic profiles of the protein structures repre-
sented in the PDB format [51] were obtained, and the
spectral algorithm of searching for the specified pat-
tern of a structural motif in the studied proteins was
further applied [21–23].

The spatial structure of secondary and supersec-
ondary protein structures is determined by the coordi-

nates of  atoms in the main chain of the protein
globule. Hence, the coordinates of the atoms in the
side chains of the protein molecules were not taken
into account.

The spatial structure of a protein as a whole and
also the spatial structure of secondary and supersec-
ondary structures can be represented via the paramet-
ric equation of a curve in a three-dimensional space:

αC

αC

=

=

=


= ϕ


 = ϕ



= ϕ








0

0

0

( ) ( )

( ) ( )

( ) ( ),

N

i i
i
N

i i
i
N

i i
i

x t A t

y t B t

z t C t
ION AND IMAGE ANALYSIS  Vol. 29  No. 4  2019



GENERALIZED SPECTRAL-ANALYTICAL METHOD 633
where  is a system of orthogonal polynomials and

, ,  are the coefficients of the expansion of func-
tions in orthogonal bases. The curve was obtained by
the methods of the analytical descriptions of the main

chain formed by the coordinates of  atoms. These
methods were implemented with the use of splines and
orthogonal polynomials [11].

The most suitable polynomials for the studied
functions are the Legendre and Chebyshev polynomi-
als. The expansion coefficients considered as the spec-
tral attributes of a signal are calculated by the general
formula

with a specified weight .

The transition from the parametric equation of a
curve in a three-dimensional space to the natural
equation of a curve in a three-dimensional space gives
the parametrized description of the curvature and tor-
sion depending on the natural curve parameter, i.e.,
the arc length

where C is the curvature function, T is the torsion
function, and s is the natural curve parameter, i.e., the
arc length

Such a description is invariant to the selection of a
Cartesian coordinate system. The curvature and tor-
sion functions are the characteristic profiles of the
spatial structure of a protein molecule. In this case, the
regular fragments, α helices, are represented by areas
of constant curvature and torsion values.

Using the specified profiles, it is possible to unam-
biguously restore the spatial structure of a motif with a
precision of up to the selection of a Cartesian coordi-
nate system. The transition from the natural equation
of a curve in a three-dimensional space to the para-
metric equation of a curve in a three-dimensional
space is performed by the Frenet formula.

Using the ProteinReviser software analytical com-
plex created by the authors on the basis of the general-
ized spectral-analytical method for the recognition of
supersecondary structures in globular proteins with
solved 3D structures, a sample of  corners from
the PDB database was formed. The sample represents
a list of proteins with specified coordinates for the
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atoms composing these structures. All of the struc-
tures found with the software analytical complex were
visually revised.

The search for  corners in the PDB database

was performed by the specified template 1D1L ::
15–37. The band model in the space of a classic 
corner with a short connection is shown in Fig. 7, and
its analytical description is illustrated in Fig. 8. Using
the methods of analytical description for the main

chain formed by the coordinates of  atoms, the
parametric equation of a curve in a three-dimensional
space was derived. Legendre polynomials were used
for the analytical description of this structural motif.

The analytical description of the structure of an
 corner was used to find the characteristic pro-

files of the spatial structure of a double helical motif,
i.e., the curvature and torsion functions. Using the
obtained profiles, it is possible to unambiguously
restore the spatial structure of a studied motif with a
precision to the selection of a coordinate system.

The curvature and torsion profiles found from the
analytical descriptions of the structure of the 
corner shown in Fig. 7 are illustrated in Figs. 9 and 10.

The developed algorithm of search for  cor-
ners in protein molecules on the basis of the general-
ized spectral-analytical method has provided the cre-
ation of a sample of structural motifs. Using the men-
tioned algorithm, 110  corners corresponding to

the specified template 1D1L : :15–37 were found in
the PDB database.

The hypothesis about the self-sustained stability of
 corners in an aqueous medium was put forward

to provide the basis for further study. In this case, self-
sustained stability is understood to mean the stability
of the spatial structure of a studied structural motif
apart from the protein molecule in which this struc-
ture was revealed. Using the method of molecular
dynamics, numerical experiment was performed to
demonstrate that the  corner is a self-sustainably
stable structure [52, 53].

It follows from the property of self-sustained stabil-
ity that all the attributes of α-α corners in the primary
structure are localized in the structure of  corners
themselves. Hence, the analysis of primary structures
only for  corners apart from the protein molecules
in which these structures were revealed will help to
reveal the characteristic features of  corners. As a
result of study, some interesting regularities in the alter-
nation of certain groups of amino acid residues were
revealed. In particular, the presence of glycine in the
contraction and the alternation of hydrophobic amino
acid residues in α helices in certain positions with
respect to glycine were statistically confirmed [52].

Hence, the combined approach to the analysis of
the spatial structure of proteins on the basis of the ana-
lytical description of the main chain of a protein glob-

α − α
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Fig. 7. Band model of an α–α corner with a short constriction.

Fig. 8. (Color online) Analytical description of an α–α corner with a short constriction by the Legendre polynomials.
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ule and the spectral method of the recognition of
repeats was proposed to solve the problem of recogniz-
ing the structural motifs of proteins (on the example of

 corners). In addition, the self-sustained stability
of  corners was analyzed by the method of
molecular dynamics in an aqueous medium. Experi-
ment has demonstrated that the  corner is a self-
sustainably stable structure, and this property may be
considered as an additional verifying attribute in the
studies. Some characteristic features of  corners

α − α
α − α

α − α

α − α
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in amino acid sequences were revealed, thus providing
the recognition of  corners in the primary struc-
tures of protein molecules also on the basis of these
features. Moreover, the geometric characteristics of
structural motifs of the -corner type, such as the
distances and torsion angles between the axes of the
helices, the surface areas and perimeters of the helix
projection overlapping the polygons, and the depen-
dence of the torsion angles between the axes of helices
on their lengths [54–57], were also studied.

α − α

α − α
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Fig. 9. (Color online) Curvature profile obtained from the analytical description of the α–α corner shown in Fig. 7. 
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Fig. 10. (Color online) Torsion profile obtained from the analytical description of the α–α corner shown in Fig 7. 
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CONCLUSIONS

In this work, the generalized spectral-analytical

method and its application to the contemporary prob-

lems of biomedicine and bioinformatics have been

described. Both the general principles of the solution

of the recognition problem with the use of GSAM and

the specific features of the problem formulations in
PATTERN RECOGNITION AND IMAGE ANALYSIS  V
various fields have been shown. The obtained results

argue for the high efficiency and universality of this

method. The initial principles underlying the con-

struction of this method lead to the successful and

efficient solution of such problems as the classification

of biomedical signals, the recognition of repeated

structures in bioinformation databases, and the recog-

nition of contour objects in images.
ol. 29  No. 4  2019
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