УДК 517.587+519.651.3

ОБОБЩЕННЫЙ СПЕКТРАЛЬНО-АНАЛИТИЧЕСКИЙ МЕТОД: ПРОБЛЕМЫ ОПИСАНИЯ ЦИФРОВЫХ ДАННЫХ СЕМЕЙСТВАМИ ОРТОГОНАЛЬНЫХ ПОЛИНОМОВ

А.Н. Панкратов, А.К. Бритенков

Описание экспериментальных сигналов обобщенными рядами Фурье высокого порядка содержит ряд проблем при численной реализации. Исследована потеря ортогональности при дискретизации области определения классических ортогональных многочленов непрерывного аргумента. Предложен устойчивый и эффективный алгоритм вычисления функций Лагерра и Эрмита высокого порядка. Точность предложенного алгоритма и теоретическое значение квадратурных формул Гаусса подтверждены на численном примере. Рассматривается проблема выбора масштабного коэффициента для адаптивной аппроксимации. Предложенные методы актуальны для исследования радиофизических сигналов (акустических [1], импульсного ядерного магнитного резонанса ЯМР [2]), биофизических измерений (лазерной доплеровской флоуметрии [3]) и экономических показателей (колебаний биржевых курсов [4]).

ВВЕДЕНИЕ В ОБОБЩЕННЫЕ РЯДЫ ФУРЬЕ

Разложение произвольной функции по системе ортогональных функций является классической задачей функционального анализа [5]. В численном анализе существует несколько направлений, связанных с применением ортогональных функций, — от решения дифференциальных уравнений до создания информационных технологий [6]. Обобщенными рядами Фурье называются линейные комбинации:

$$f(t) = \sum_{i} A_{i} \varphi_{i}(t), \qquad (1)$$

где постоянные A_i называются коэффициентами разложения функции f(t) в базисе функций { $\varphi_i(t)$ }. Базис { $\varphi_i(t)$ } удовлетворяет условию ортогональности

$$(\varphi_i(t), \varphi_j(t)) = 0$$
 при $i \neq j$; $(\varphi_i(t), \varphi_j(t)) \neq 0$ при $i = j$, (2)

в смысле функционала скалярного произведения с весом $\rho(t)$ ($\rho(t) > 0$)

$$(x, y) = \int_{a}^{b} x(t)y(t)\rho(t)dt.$$
(3)

Преимущество ортогональных базисов можно прокомментировать следующим образом. Коэффициенты разложения по неортогональной системе функций определяются системой линейных уравнений

$$\sum_{i=0}^{N} A_i(\varphi_i, \varphi_j) = (f, \varphi_j), \quad j = 0, \dots, N.$$

$$\tag{4}$$

Такая система получается в результате скалярного умножения (1) на систему базисных функций { $\varphi_i(t)$ }. Матрица системы (4) состоит из попарных скалярных произведений базисных функций и называется матрицей Грама. В случае ортогональной системы матрица Грама становится диагональной и позволяет использовать явные формулы для вычисления коэффициентов разложения (1):

$$A_i = \frac{(f, \varphi_i)}{(\varphi_i, \varphi_i)} \qquad i = 0, \dots, N .$$
(5)

Для любого ортогонального разложения в ряд (1) выполняется неравенство Бесселя, переходящее при $N \to \infty$ в равенство Ляпунова–Стеклова, характеризующее полноту или замкнутость ортогональной системы { $\varphi_i(t)$ }:

$$\|f(t)\|^{2} \ge \sum_{n=0}^{N} A_{n}^{2} \|\varphi_{n}\|^{2},$$
 (6)

где

$$\left\|f(t)\right\| = \sqrt{\left(f(t), f(t)\right)} \tag{7}$$

норма функции. Неравенство (6) определяет сходимость ряда, составленного из квадратов коэффициентов разложения. Для любых функций f и g, представленных рядами (1), справедливо соотношение:

$$(f,g) = \sum_{n=0}^{\infty} A_n B_n \| \varphi_n \|^2.$$
 (8)

Это соотношение вводит скалярное произведение в пространстве коэффициентов разложения (изоморфизм между исходным функциональным пространством и пространством коэффициентов разложения). Ортогональному с весом $\rho(t)$ базису { $\phi_i(t)$ } можно поставить в соответствие базис

$$\psi_i(t) = \sqrt{\rho(t)\varphi_i(t)},\tag{9}$$

ортогональный с единичным весом (изоморфизм гильбертовых пространств).

Любая функция f может быть аппроксимирована с заданной точностью \mathcal{E} , при некотором $N = N_{\varepsilon}$, если ортогональная система { $\varphi_i(t)$ } является полной. По-грешность аппроксимации может быть измерена по следующей формуле:

$$\theta_{N} = \left\| f(t) - \sum_{i=0}^{N} A_{i} \varphi_{i}(t) \right\|^{2} = \left\| f(t) \right\|^{2} - \sum_{i=0}^{N} A_{i}^{2} \left\| \varphi_{i} \right\|^{2}.$$
 (10)

Коэффициенты разложения (5) доставляют минимум функционалу интегральной ошибки θ_N [5] и не зависят от N (жесткость разложения).

ДИСКРЕТНОЕ ПРЕДСТАВЛЕНИЕ БАЗИСНЫХ ФУНКЦИЙ

Элементы функционального пространства задаются различными способами. Наряду с описанием (1) практически важным и общим представлением функции является описание в виде таблицы

$$f(t) = \{f_1(t_1), f_2(t_2), \dots, f_m(t_m)\}, \quad a \le t_i \le b,$$
(11)

что является аналогом функции дискретного аргумента. В задачах обработки экспериментальных данных представление (11) является исходным и по нему необходимо получить численно-аналитическое представление в виде отрезка ряда (1). В связи с этим возникают две проблемы: интерполяция функции дискретного аргумента (11) и дискретизация скалярного произведения (3). Первая проблема преобразования функции дискретного аргумента в функцию непрерывного аргумента — решается посредством выбора подходящего метода интерполяции данных. Вторая проблема — дискретизации области определения функций непрерывного аргумента — неизбежно возникает при численном вычислении интегралов и, в частности, коэффициентов разложения, и на нее налагается жесткое требование сохранения ортогональности базиса. При приближенном вычислении интегралов на некоторой сетке ортогональность базисных функций, вообще говоря, нарушается, а при разложении по системе неортогональных функций коэффициенты разложения (1) не могут быть вычислены по формулам (5).

Рассмотрим дискретный аналог скалярного произведения (3) в пространстве функций дискретного аргумента:

$$(x, y) = \int_{a}^{b} x(t)y(t)\rho(t)dt = \sum_{i=1}^{m} x(t_i)y(t_i)w_i.$$
 (12)

Равенство между интегралом и суммой имеет место только при определенных условиях на подынтегральную функцию и определенном выборе узлов t_i и весов w_i . Наивысшую алгебраическую точность имеют квадратуры Гаусса [7]. При специальном выборе узлов и весов (общее число параметров 2m) можно удовлетворить условию, чтобы квадратурная формула была точна для подынтегральной функции, представляющей собой многочлен степени не выше 2m-1, умноженный на весовую функцию $\rho(t)$. Доказано [7], что узлы квадратурной формулы (12) являются нулями ортогонального многочлена степени m, соответствующего весовой функции $\rho(t)$. Формула (12) обеспечивает изоморфизм между пространством линейных комбинаций (1) и пространством функций дискретного аргумента на специально выбранной сетке. При таком изоморфизме сеточной функции, заданной в узлах полинома степени m, ставится в соответствие единственным образом полином степени m - 1, умноженный на корень из весовой функции (9). Смысл квадратур Гаусса состоит в том, что они позволяют ортогональной системе функ-

ций непрерывного аргумента поставить в соответствие ортогональную систему функций дискретного аргумента (на неравномерной сетке).

НАРУШЕНИЕ ОРТОГОНАЛЬНОСТИ ПРИ ДИСКРЕТИЗАЦИИ

Рассмотрим нарушение ортогональности на примере функций Лагерра [8]:

$$l_n(t) = \sqrt{m} \exp\left(-\frac{mt}{2}\right) \sum_{k=0}^n C_n^{n-k} \frac{(-mt)^k}{k!},$$
(13)

где m > 0 — масштабный коэффициент, изменяющий эффективную длину $l_n(t)$. На рис. 1 представлен общий вид ортогональной на полубесконечном интервале $[0,\infty)$ функции Лагерра. Рисунок показывает, что функция является практически финитной. При этом эффективный интервал, на котором амплитуда колебаний функции имеет один и тот же порядок, растет линейно с ростом *n*. Основой построения квадратурных формул высокого порядка является устойчивое и эффективное вычисление базисных функций. В данной работе для вычисления функций Лагерра высокого порядка был применен прием, заслуживающий специального рассмотрения.

Рис. 1. Функция Лагерра $l_n(t)$ при n = 50, m = 1

В пакете процедур Numerical Recipes [9] предложены методы вычисления узлов и весов для всех семейств классических ортогональных многочленов [8]. В данной работе эти процедуры были использованы и модифицированы с применением более устойчивого алгоритма вычисления функций Лагерра. В отличие от пакета процедур Numerical Recipes [9], в котором представлены процедуры для полиномов, здесь построены квадратурные формулы для функций, полученных согласно (9). Нули полиномов и соответствующих им функций совпадают, а веса квадратурной формулы Гаусса для полиномов и функций отличаются множителем $\rho(t)$. Переход от полиномов к функциям позволяет построить квадратурные формулы Гаусса высокого порядка, поскольку функции являются ограниченными.

Рис. 2. Значения весов *w_i* квадратурной формулы Гаусса для функций Лагерра в зависимости от узлов *t_i* (слева) и в сравнении с весами формулы прямоугольников (справа) (0 ≤ *i* <1000)

На рис. 2 представлены результаты вычисления узлов и весов квадратурной формулы Гаусса для функций Лагерра. Узлы квадратурной формулы находились численно как нули ортогональной функции Лагерра. Для наиболее точного и эффективного определения и уточнения нулей в рамках машинной точности использовались последовательно три итерационных метода: метод Ньютона, метод ложного положения (regula falsi) и метод деления отрезка пополам [9]. Было обнаружено, что итерации Ньютона эффективны только при первоначальном уточнении корня, поскольку начиная с некоторой итерации (в большинстве случаев — после первой) они порождают колебания вокруг уточняемого корня. Когда корень становится ограниченным с двух сторон на числовой оси, более эффективны итерации по секущей, без определения производной функции. На конечном этапе для уточнения значения корня в последних значащих цифрах мантиссы машинного представления числа использовался метод деления пополам. Остается отметить, что начальные приближения для корней выбирались такими же, как в [9], а именно, для t_1 и t_2 существуют аналитические начальные приближения, а начальные приближения для следующих корней выбирались исходя из того, что расстояние между корнями монотонно увеличивается $T_i \approx t_{i-1} + (t_{i-1} - t_{i-2})$ (рис. 1).

Веса квадратурной формулы Гаусса

$$w_i = \frac{t_i}{n^2 l_{n-1}^2(t_i)}$$
(14)

получены из общих соотношений [7].

Для иллюстрации явлений сохранения и нарушения ортогональности сравним метод Гаусса с методом прямоугольников. При приближенном интегрировании методом прямоугольников использовалась та же неравномерная сетка Гаусса, но веса квадратурной формулы заменялись на величины $w_i = t_i - t_{i-1}$ при *i* от 2 до

1000 и $w_1 = t_1$. Как видно из рис. 2, веса двух квадратурных формул различаются незначительно, в основном на первых и последних точках квадратурной формулы. Чтобы показать различие не только последних, но и первых весов, их сравнение представлено в логарифмическом масштабе.

На рис. 3 представлены результаты вычисления элементов матрицы Грама для ортогональных функций Лагерра методом Гаусса и методом прямоугольников. Распределение ошибки интегрирования показано в виде десятичного логарифма абсолютного значения отклонения вычисленной матрицы Грама от теоретической (единичной). Метод Гаусса точен для выбранного класса функций, и источником ошибки является сокращение знаков при приближенных вычислениях. Метод прямоугольников не сохраняет ортогональности рассматриваемых функций, и ошибка носит систематический характер. Об этом свидетельствует различие ошибки в первом и втором случае более чем на десять порядков.

Рис. 3. Порядок ошибки вычисления элементов матрицы Грама (4) для функций Лагерра (0 ≤ *i* < 1000) методом Гаусса (слева) и методом прямоугольников (справа)

ПОСТРОЕНИЕ УСТОЙЧИВЫХ АЛГОРИТМОВ ВЫЧИСЛЕНИЯ ОРТОГОНАЛЬНЫХ ФУНКЦИЙ ВЫСОКОГО ПОРЯДКА

Ортогональные многочлены удовлетворяют разностным уравнениям вида:

$$\varphi_{i+1}(t) = (a_i + b_i t)\varphi_i(t) + c_i \varphi_{i-1}(t), \qquad (15)$$

где a_i, b_i, c_i — коэффициенты, не зависящие от t. В силу однородности уравнения (15) ему удовлетворяют как полиномы, так и соответствующие им функции. Для прямого вычисления полиномов по формуле (15) необходимо задать начальные условия, которые для классических ортогональных многочленов в стандартной форме имеют вид:

$$\varphi_1(t) = 1, \ \varphi_{-1}(t) = 0.$$
 (16)

Полиномы Лагерра [8] ортогональны на полубесконечном интервале с весовой функцией e^{-t} . Сущность проблемы, возникающей при вычислении значений функции Лагерра (13), состоит в следующем. Значения функции Лагерра определяются двумя множителями — значением полинома, осциллирующего и неограниченно

возрастающего, и значением корня из весовой функции, экспоненциально убывающей с ростом аргумента. При достаточно больших *t* эти множители в конечном машинном представлении приводят к переполнению и исчезновению порядка соответственно. Однако их произведение — функция Лагерра — является «хорошей» величиной для машинного представления.

Получение искомых функций с помощью рекуррентных соотношений вида (15, 16) или по явной формуле (13) приводит к счетной неустойчивости. Можно показать, что функции Лагерра l_n , полученные по рекуррентным формулам (15, 16) и вычисленные напрямую (13), существенно отличаются уже при n > 40. Для решения описанных проблем была использована следующая технология вычисления функций Лагерра высокого порядка. На каждом шаге итерационного процесса (15) вычисляемые величины $\varphi_i(t)$, $\varphi_{i-1}(t)$ умножаются на величину $e^{-t/(2n)}$, где n — порядок функции Лагерра. За n циклов общий множитель составит величину требуемого множителя для определения функции Лагерра, а именно $e^{-t/2}$. Расчеты показали, что такое усовершенствование итерационного процесса (15, 16) позволяет уверенно вычислять функции Лагерра свыше 1000-го порядка.

В настоящей работе эта идея реализована в следующем алгоритме. На каждом шаге нормировка осуществляется не постоянным множителем, а переменной величиной 2^k , где k — порядок двоичного представления $\varphi_i(t)$. Иными словами, порядок машинного представления $\varphi_i(t)$ обнуляется, а порядки $\varphi_{i+1}(t)$ и $\varphi_{j-1}(t)$ изменяются на величину k. Целочисленная переменная C содержит в себе сумму изменений порядков k с начала рекуррентного процесса. В итоге, для получения значения функции $l_n(t)$ через n итераций по формуле (15) с начальными условиями (16) результат необходимо умножить на величину:

$$\exp\left(C\ln 2 - \frac{t}{2}\right). \tag{17}$$

Поскольку такое усовершенствование алгоритма добавляет лишь целочисленные операции, то эффективность вычисления функций не снижается, а устойчивость повышается. Данный алгоритм позволяет за n шагов рекуррентного процесса (15) получить значения всех функций с нулевого по n - 1 порядок включительно, что обеспечивает высокое быстродействие вычислительных процедур. Ограничение на порядок вычисляемых функций авторами не обнаружено (алгоритм протестирован для функций Лагерра и Эрмита с n = 10000).

АДАПТИВНАЯ АППРОКСИМАЦИЯ ОРТОГОНАЛЬНЫМ РЯДОМ

Рассмотрим согласование интервала существования сигнала f(t) и области определения базисных функций { $\varphi_i(t)$ }. Возможны два способа, применять которые следует в зависимости от задачи и дальнейшей обработки. Первый способ — замена аргумента аппроксимируемой функции, второй — модификация системы базиса путем замены аргумента базисных функций. Второй способ является более громоздким, поскольку фактически вводит параметры интервала в число параметров базиса, однако оказывается единственно возможным при решении обратных задач, когда требуется работать с аналитической формой разложения, параметры интервала которого еще не известны. Это приводит к так называемым модифицированным базисам [6].

В случае аппроксимации на полуограниченном интервале $[0,\infty)$ коэффициенты A_i являются функциями масштабного коэффициента m:

$$A_i(m) = \left\| \varphi_i \right\|^{-2} \int_0^\infty f\left(\frac{t}{m}\right) \varphi_i(t) \rho(t) dt \,. \tag{18}$$

Свобода в выборе масштабного коэффициента m приводит к оптимизации разложения, то есть к сокращению количества N членов ряда (1) при заданной точности ε . Это достигается минимизацией среднеквадратичной ошибки (10) как функции масштабного коэффициента $\theta_N(m)$:

$$\theta_N(m_{opt}) = \min_{m>0} \theta_N(m) \,. \tag{19}$$

Согласно равенству (10) ошибка аппроксимации монотонно убывает при увеличении N, а ее зависимость от m является более сложной [6].

Покажем, что эффективная длительность функций Лагерра линейно зависит от *N*. Для этого рассмотрим квадрат функции Лагерра порядка *N* как плотность распределения и определим средний радиус этого распределения:

$$\int_{0}^{\infty} t L_{N}^{2}(t)e^{-t}dt = 2N+1.$$
(20)

Начальным приближением для решения оптимизационной задачи (19) может служить значение *m*, полученное при согласовании эффективных интервалов аппроксимируемой функции и базисной функции максимального порядка.

ВЫВОДЫ И ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

В данной работе рассматривались вопросы численной реализации методов разложения в классические ортогональные ряды цифровых данных. Показано, что использование квадратур Гаусса позволяет корректно вычислять интеграл скалярного произведения. При использовании других квадратур возникает феномен нарушения ортогональности. Матрица Грама, традиционно трактуемая в вычислительной математике как мера линейной независимости системы функций, в данной работе использовалась как мера ортогональности. Нами также предложен способ вычисления функций Лагерра и Эрмита высокого порядка, который может быть использован и для других ортогональных систем.

Актуальность использования функций Лагерра высокого порядка подтверждается в работах, посвященных решению дифференциальных уравнений [10], исследованию случайных процессов [11], развитию вейвлет-анализа [12] и обобщенного спектрально-аналитического метода ОСАМ [6].

Важная особенность методологии ОСАМ состоит в том, что на практике зачастую ограничиваются рассмотрением спектров исследуемых сигналов, и даже разлагая сигнал в более сложные ортогональные ряды (не только в тригонометрические ряды Фурье), как правило, не анализируют полученного аналитического описания и не оценивают отклонения от исходных данных. Исключительно важно заниматься восстановлением сигнала из найденного спектра в используемом пространстве базисных функций, поскольку идеальной аппроксимации получить невозможно из-за присутствия помех в любом реальном сигнале, и оценка ошибки полученного описания является, вообще говоря, нетривиальной задачей в силу неоднозначности ее определения (что связано со спецификой конкретной задачи).

Авторы выражают глубокую признательность проф. МГУ Ф.Ф. Дедусу за постоянное внимание к работе и высказанные замечания при оформлении публикации. Работа выполнена при поддержке грантов РФФИ 00-01-00417, 01-02-16127 и гранта Минпромнауки НШ-1641.2003.2.

ЛИТЕРАТУРА

- Бритенков А.К., Романова И.В. Психоакустика и сжатие аудиоданных на основе разложения сигналов по модифицированным классическим ортогональным базисам // Тез. докл. Международной молодежной научной конф. «XXVIII Гагаринские чтения» 9–12 апреля 2002. М.: Изд. «МАТИ», 2002. Т. 2. С. 15.
- Дероум Э. Современные методы ЯМР для химических исследований М.: Мир, 1990. 265 с.
- Панкратов А.Н., Быстрова Н.К. Обработка сигналов лазерной доплеровской флоуметрии, получаемых при зондировании микроциркуляторного русла кожи // Труды Всероссийской школы-семинара «Волновые явления в неоднородных средах» (22–27 мая 2000, Красновидово, Московская область). Т. 1. С. 16.
- Артюхин И.В., Бритенков А.К. Описание, анализ и прогнозирование котировок ценных бумаг с помощью обобщенного спектрально-аналитического метода для динамического управления портфелем ценных бумаг // Докл. Х всероссийской конф. «Математические методы распознавания образов — 10» (ММРО–10), 19–23 ноября 2001. М.: ВЦ РАН, 2001. С. 167.
- 5. Курант Р., Гильберт Д. Методы математической физики. Том 1. М.-Л.: ГИТТЛ, 1951. 476 с.
- Дедус Ф.Ф., Махортых С.А., Устинин М.Н., Дедус А.Ф. Обобщенный спектральноаналитический метод обработки информационных массивов. Задачи анализа изображений и распознавания образов / Под общ. ред. Ф.Ф. Дедуса. М.: Машиностроение, 1999. 357 с.
- Никифоров А.Ф., Уваров В.Б. Специальные функции математической физики. М.: Наука, 1984. 344 с.
- Справочник по специальным функциям / Под ред. М. Абрамовица и И. Стиган. Пер. с англ. М.: Наука, 1979. 832 с.
- 9. Press W.H., Teukolsky S.A., Vetterling W.T., Flannery B.P. Numerical Recipes in C (The Art of Scientific Computing). Second edition. Cambridge University Press, 1992. 994 p.

- 10. Shen J. Stable and Efficient Spectral Methods in Unbounded Domains Using Laguerre Functions // SIAM Journal on Numerical Analysis. 2000. Vol. 38. № 4. P. 1113–1133.
- 11. Grafov B.P., Grafova I.B. Theory of the wavelet analysis for electrochemical noise by use of Laguerre functions // Electrochemistry communications. 2 (2000). P. 386–389.
- 12. Астафьева Н.М. Вейвлет-анализ: основы теории и примеры применения // Успехи физических наук. 1998. Т. 166. № 11. С. 1145–1170.