
ISSN 1054-6618, Pattern Recognition and Image Analysis, 2007, Vol. 17, No. 2, pp. 227–235. © Pleiades Publishing, Ltd., 2007.

 

Contour Recognition Based on Spectral Methods. 
Solution of the Problem of Choice of the Start-Point

 

R. K. Tetouev (Titúlany)

 

Institute of Mathematical Problems of Biology, Russian Academy of Sciences, 
ul. Institutskaya, 4, Pushchino, Moscow oblast, 142290 Russia

e-mail: radja@impb.ru

 

Abstract

 

—The paper is devoted to the use of spectral methods in problems of visual pattern recognition. The
main idea is to associate a two-dimensional closed line, treated as a univariate function, with the contour of each
object. On the basis of analysis of expansion coefficients of these functions, we propose adequate quantitative
estimates for similarity of objects, which are invariant under affine transformations of the plane. A particular
result is the invariance of the spectral representation with respect to the choice of the start-point. This invariance
is obtained on the basis of the sine–cosine decomposition of arbitrary periodic functions.
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INTRODUCTION

Many researchers agree in opinion that the silhou-
ette of an object is a more informative part of the pat-
tern
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 than its color. By virtue of conditional character of
this proposition, mathematicians solving the problem
of pattern recognition unintentionally participate in one
of the crucial disputes of fine arts, namely, the dispute
about “color and shape.” However, in contrast to artists,
mathematicians are guided by trusted concepts of effec-
tiveness and stability of quantitative estimates for sim-
ilarity of images
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 rather than by aesthetic preferences
and adequacy of the attitude.

For instance, it is clear that the color of a tomato is
much more informative for determining the ripeness of
the object (tomato) than its shape. However, in sorting,
for instance, eggplants intermixed with squashes, the
difference in shapes can be quite useful.

We emphasize that there are problems dealing ini-
tially only with the concept of a shape, where no filters
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for images are needed. Problems such as recognition of
an object knowing only its shadow operate only with a
mask
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 of an object without any other information.
However, the recognition of “colored” visual objects if
also often naturally reducible to the problem of distinc-
tion of figures
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, typical marks, contrast pictures, etc. In
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A pattern

 

 is a group of points of an image determined by one
object.
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An image

 

 is a two-dimensional array of multicolored points (pix-
els).
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A filter

 

 (here) is a Boolean function of the image point
(object/nonobject).
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A mask

 

 (here) is the result of the action of a filter on all points of
an image.

 

this case, the differences in colors may play the role of
auxiliary information.

In this paper, we discuss pattern recognition which
is performed exclusively on the basis of distinction of
silhouettes, contours
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 determining the pattern shape,
but not the internal points
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 of the pattern.

We clarify that the filters should be chosen in such a
way that objects of the nature interesting for us in the
plane are well distinguishable in the plane of the image
mask. Depending on the application area, quite com-
plex filters are sometimes needed which help to analyze
the loci of discontinuities of color gradients of the
image, calculate fractal dimensionalities, etc.

Generally speaking, the discussion about the design
of such filters is beyond of the scope of this paper. How-
ever, many recognition problems, to which researchers
have at last drawn their attention, can be surprisingly
easily filtered with simple filters and decomposed into
a variety of typical figures.

In the next section, we develop a method, using
which one can easily and quickly describe these figures
and compare them with one another.

GENERAL RECOGNITION SCHEME. 
METHOD OF RADIUS FUNCTION

Recognition of visual patterns by a recognition sys-
tem must be fulfilled in the automatic mode in accor-
dance with a unique scheme (common for all objects)
designed by a certain recognition method. In this sec-
tion, we describe a scheme based on distinction of the
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A figure

 

 (here) is a simply connected closed domain of the mask.
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A contour

 

 (here) is a group of boundary (not internal) points of
the figure.
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An internal point

 

 (here) is a point such that all its neighboring
points have the same color.
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spectral representation of one of the most important
components of visual patterns.

In the general case of a color image, we use a certain
filter in order to obtain a mask (a monochromatic black
and white picture). Individual groups of black points
are associated with the pattern of an object of nature
interesting for us. It is assumed that similar objects are
characterized by the similarity of their shapes (figures)
in the geometrical sense. Of course, we cannot expect
that the silhouettes coincide exactly, pixelwise because
of natural distortions of color rendition, different scal-
ing, translations, and rotation angles of patterns in the
plane. These are the reasons why we must apply meth-
ods to a great degree approximate, which are stable
under noise actions.

Thus, in the simplest case, we have two black
“spots” on the white background, and we have to esti-
mate quantitatively the similarity of their shapes. It is
natural to propose (for saving in computer time and
memory) to compare the relative positions of boundary
points rather than all points. The fact that, among the
nearest neighbors of any boundary point of the figure,
there are just two points which are also boundary points
allows us to design a process for figure tracing such that
all boundary points become ordered after this process.
During the tracing process, we should proceed in accor-
dance with a certain agreement about the direction of
the motion: clockwise or counterclockwise.

This process (referred to as vectorization, see [2])
being completed, we obtain an ordered set of coordi-
nates of the boundary points, which may be represented
in the form of two arrays {

 

X

 

i

 

} and {

 

Y

 

i

 

}, where 1 

 

≤

 

 

 

i

 

 

 

≤

 

 

 

N

 

and 

 

N

 

 is the number of all boundary points of the given
figure. It is clear that the arrays obtained may be repre-
sented as discrete values of some periodic functions.
However, it is obvious that, taking different boundary
points of the same figure as the start-points of vector-
ization, we obtain, in the general case, different coordi-
nate arrays shifted with respect to each other. One often
tries to resolve this indeterminacy (the so-called prob-
lem of the start-point choice) by taking the most distant

point from the mass center

 

8

 

 of the contour or even fig-
ure as the start-point. Below, we will also use this
approach except for one explicitly specified case (see

 

Spectral Invariants of the Choice of the Start-Point.
The Clock-Diagram Method

 

).

Since the distance between a given point of the con-
tour and its mass center is independent of transition and
rotations of the figure in the plane, we propose to pass
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The mass center

 

 is the point whose coordinates are the arith-
metic means of the corresponding coordinates of the group of
points.

 

from Euclidean coordinates (

 

X

 

i

 

, 

 

Y

 

i

 

) to polar coordinates
(

 

R

 

i

 

, 

 

ω

 

i

 

) with the origin

Note that the form of the function of radius-compo-
nent {

 

R

 

i

 

} of tracing vector (

 

R

 

, 

 

ω

 

) is expressible and eas-
ily distinguishable for most figures. However, this does
not hold for the azimuth-component {

 

ω

 

i

 

}; therefore, in
the recognition scheme below, the latter is not involved.
This significantly simplifies and accelerates the process
in practice.

At this stage, for each contour we obtain an array
{

 

R

 

i

 

}. The size of this array is quite large and different
for different figures. Therefore, it is difficult to estimate
the similarity directly. It is much better to represent
{

 

R

 

i

 

} in the form of orthogonal expansiuon
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 in some
predefined functions {

 

ϕ

 

i

 

(

 

t

 

i

 

)}

Actually, the orthogonal expansion transforms each
array {

 

R

 

i

 

} into an array of expansion coefficients {

 

C

 

i

 

}
of the same size 

 

N

 

. However, to compare figures
approximately, it is sufficient to use only a few first 

 

k

 

 <

 

N

 

 coefficients that provide a satisfactory approxima-
tion
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 of the array {

 

R

 

i

 

}:

As the system of functions {

 

φ

 

n

 

(

 

t

 

i

 

)} for such a represen-
tation, it is convenient to specify the set of discrete
Tchebychev polynomials {

 

θ

 

n

 

(

 

t

 

i

 

)}, which are orthogo-
nal with the unit weight on the uniform grid 

 

t

 

i

 

 = 

 

i

 

 of
arbitrary size 0 < 

 

i

 

 < 

 

N

 

 – 1 (see [1]). This is the orthog-
onal basis that is used in most examples in the paper.

To realize the automatic estimation of the figure
similarity, it remains only to propose a quantitative esti-
mate for similarity of coefficients {

 

C

 

n

 

} determined by
each contour. As has been mentioned above, we should
apply methods, which are sufficiently approximating
and stable under the noise action. These requirements
are totally met by the estimation of the correlation of
the corresponding expansion coefficients of different
contours. Then, numerical results for contours with
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Orthogonal expansion

 

 is a representation of the function in the
form of a linear form of a series of functions, which compose a
system (spectrum).
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An approximation

 

 (here) is an approximate representation of
the function in the form of an incomplete orthogonal expansion.
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coefficient series {

 

C

 

n

 

} and { } may be easily inter-
preted as follows:

In the case of almost zero correlation

we obtain the absence of the correlation between the
corresponding objects. However, we have a high prob-
ability of similarity in the case

As a result, we have obtained a fast and efficient
method for pattern recognition based on analysis of
object contours. We will refer to it as the method of
radius function. We write the main stages of this
method in the following form:

• Conversion of the visual pattern into the space of
coefficients:

– construction of the mask of the object;

Cn'

ρ Cn{ } Cn'{ },( ) 0,≈

ρ Cn{ } Cn'{ },( ) 1.≈

– extraction of the figure and vectorization of the
contour;

– passage to the polar coordinate system;
– calculation of the expansion coefficients of the

radius function.
• Quantitative evaluation of similarity of objects

based on analysis of the correlation of the correspond-
ing expansion coefficients.

The main stages of the recognition scheme are illus-
trated in Fig. 1.

APPLICATION OF THE METHOD OF RADIUS 
FUNCTION TO CHARACTER RECOGNITION

To demonstrate the efficiency of the method dis-
cussed, we perform a numerical experiment by testing
this method on an example of recognition of arbitrary
symbols. Note that the recognition, as an intelligent

~

~

~{Cn}

{Xi} {Yi}

{Ri}

Fig. 1. Stages of pattern recognition based on distinction of contours.
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process, may be represented in the most general sense
by two individual phases.

The first phase consists in active accumulation of
information. During this phase, the system of pattern
recognition, in accordance with a predefined scheme,
processes and analyzes the information about all
objects presented to it. On the basis of this information,
it generates its own representation for each presented
object. These representations are stored in a repository,
a data bank. Each record in this bank is also associated
with our understanding of the object. The first phase is
often referred to as the learning phase of the recognition
system.

The second phase begins with the presentation of a
new unknown object to the system. First of all, the
object is processed by the same scheme that has been
used by the system at the learning stage for processing
the known objects. Then, the obtained representation of
the new object is used for retrieving, in the data bank, a
record about an object whose representation, in a sense,
is closest to this object. As a result, if the system

acknowledges an object of this type, then we obtain the
matching between the pattern of the new object and one
of the objects used by the system at the learning stage.

The second phase is often referred to as identifica-
tion of the object.

Thus, let us take a system of pattern recognition,
which, for the sake of simplicity, have representations
of only three Kanji hieroglyphs and three letters from
different alphabets (see Fig. 2). The representations are
generated by the system in accordance with the scheme
discussed in the previous section; i.e., each pattern is
associated with a tuple of, for instance, twenty num-
bers, which are the first coefficients of the expansion of
the radius function of the contour.

Next, we provide the system with three objects for
identification, which are extracted from the images in
Figs. 3 (symbols 1 and 2) and 4 (symbol 3).

As a result of processing the symbol contours, both
used for learning and intended for identification, we
obtain the spectral representation of their radius func-
tions in the form of series of the expansion coefficients
(Table 1).

As has been said above, the system estimates the
similarity of the objects on the basis of the correlation
between the series of coefficients. By matching the rep-
resentation of the new objects with those known by sys-
tem since the learning stage, we obtain quantitative
estimates for the similarity. These estimates are pre-
sented in Table 2.

Analyzing Table 2, we can easily conclude that sym-
bols 1 and 2 are, with a high probability, the Kanji
hieroglyphs that denote the words “look” and “book,”
respectively, while the tribal mark (symbol 3) origi-
nates most probably from the Greek capital letter “psi.”
We see that the computer results obtained in this
numerical experiment are to a high degree adequate to
decisions made by most people in this situation. This

(a) (b) (c)

(d) (e) (f)

Fig. 2. A collection of writing symbols.

Fig. 3. A sample of Kanji hieroglyphic writing.
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confirms the applicability of this approach to problems
of pattern recognition.

SPECTRAL INVARIANTS
OF THE CHOICE OF THE START-POINT. 

THE CLOCK-DIAGRAM METHOD

Let us go back to discussion of the uncertainty of the
choice of the start-point that arises at the stage of vec-
torization mentioned above in the section “General
Recognition Scheme. Method of Radius Function.”

First, for convenience, we introduce the notation

where {τ} is the fractional part of number τ.
Let φ(t) and ψ(t) be some functions defined on the

interval (0, T). If there exists a unique 0 < θ < T such
that

then we say that functions φ(t) and ψ(t) are equal in
period T (or simply “are equal in period”) and the quan-
tity θ will be referred to as the phase shift. If there exist
N values θ1, θ2, …, θN for which this equality holds,
then functions φ(t) and ψ(t) are equal in period T/N (or
multiply equal in period).

Now, we formulate the problem of the start-point
choice in the general form as follows;

it is required to find the phase shift for two arbitrary
functions if these functions are equal in period or prove
that this proposition does not hold.

Of course, in practice we should replace the exact
coincidence by an approximate one

and the uniqueness by an extremum. In this case, we
will speak about functional closeness in period.

All attempts to solve this problem may be divided
into two types. Those of the first type are aimed at the
design of a fast and efficient tool for numerical calcula-
tion of the unique (stable) value of the phase shift,
while the attempts of the second type are aimed at the
search for invariant quantities, which are independent
of the phase shift and, at the same time, may be used for
recognition of periodic functions.

In practice, the first approach often results in unrea-
sonably high expenses of resources, while the second
approach is more elegant but has obvious drawbacks.
The reason is that the group of invariants is not a com-
plete system of features; i.e., knowing all such features,
we cannot uniquely reconstruct the function. This
means that, even in the case of full coincidence of all
invariants of the functions, the system may assert only
that it is “very probable” that the functions are “very
similar.”

Therefore, it seems very attractive to derive a rigor-
ous stable representation of periodic functions, which is

t θ+{ }T T t θ+( )/T{ },=

φ t( ) ψ t θ+{ }T( ),=

φ t( ) ψ t θ+{ }T( )≈

absolutely independent and invariant with respect to the
phase shift, together with the phase shift θ0 relative to a
certain reference position. In this case, knowing the
representation and quantity θ0, we can always recon-
struct the function. This would allow us to assert that
the periodic functions are close in shape to the same
degree as their representations are close and that the
difference of the corresponding values of rotations with
respect to a reference position (the difference of values
of θ0) is equal to the phase shift of these functions with
respect to each other.

Looking ahead, we note that such an invariant rep-
resentation has been found. It can be expressed in terms
of spectral analysis in the case of classical orthogonal
expansion of functions as follows:

We emphasize the quantity a0/2, which will be referred
to as the level of function f(t). This is a value that is
independent of the phase shift and may be chosen as an
invariant feature even at this stage. We obtain

f t( )
a0

2
----- an ntcos

n 1=

N

∑ bn nt.sin+ +=

φ t( ) an ntcos
n 1=

N

∑ bn nt,sin+=

Table 1.  Representation of the radius function by the coeffi-
cient series

C0 C1 C2 C3 …

A –0.09 0.09 0.02 –0.13 …

B –0.13 0.27 –0.04 –0.20 …

C 0.16 0.25 –0.38 0.69 …

D –0.16 0.39 –0.38 0.47 …

E 0.11 –0.01 –0.01 0.83 …

F –0.54 0.37 0.49 0.77 …

1 0.19 0.16 –0.41 0.75 …

2 –0.10 0.17 0.03 0.96 …

3 –0.50 0.51 0.64 1.06 …

Table 2.  Quantitative estimates for the symbol similarities

Symbol 1 2 3

A 0.4112 0.9336 0.6095

B 0.5235 0.4478 0.5770

C 0.9638 0.4399 0.1652

D 0.0460 0.5903 0.4516

E 0.4392 0.6639 0.3707

F 0.2212 0.6611 0.9042
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Further, we assume that the exact relation

holds. Since

we obtain

Hence, we arrive at the relation

In other words, the set {(an, bn)} being considered as a
matrix of vectors on the plane, the latter relation means
that, regardless of possible phase shifts, the lengths of

vectors  and  always coincide.
Denote this quantity by

It is clear that {rn} is a set of invariant features. Note
however that it is insufficient to know values {rn} in
order to reconstruct the initial function. For this pur-
pose, we use the relation

where

As a result of phase shift, variable t being replaced with
variable t ' = t + θ, all {ωn} are also replaced by new val-

ues { }. From the last relation, we can see that

This implies

Continuing the analogy with vectors, we note that, in
accordance with the expression obtained, the phase
shift of any function does not change the length rn of

each vector  but changes its polar angle ωn

by a value, which is inverse and multiple of the phase
change and proportional to the index of the vector. Rep-
resenting vectors by diagrams, we see that, similarly to
clock hands, they have different periods of rotation with
respect to the phase variation: the speed of the first

ψ t( ) an' ntcos
n 1=

N

∑ bn' nt.sin+=

φ t( ) ψ t θ+( )=

ψ t θ+( ) an' n t θ+( )cos bn' n t θ+( )sin+( ),
n 1=

N

∑=

an an' nθcos bn' nθ,sin+=

bn bn' nθcos an' nθ.sin–=

an
2

bn
2

+ an'
2

bn'
2
.+=

an bn,( ){ } an' bn',( ){ }

rn an
2

bn
2

+ .=

an ntcos bn ntsin+ rn nt ωn+( ),cos=

ωn

bn

an

-----.arctan=

ωn'

ωn' ωn–( ) n t ' t–( )+ 0.=

ωn' ωn nθ.–=

an bn,( ){ }

“hand” coincides with the speed of the phase variation,
the rotation speed of the second hand is equal to the
doubled speed of the first one, this of the third hand is
equal to the tripled speed of the first one, etc. To verify
the main conjecture that two arbitrary clock diagrams
correspond to the same periodic function taken with
different phases, it is sufficient to align their first hands:
if the other hands also coincide, then the hypothesis is
surely true; otherwise, it is false.11 He have just
obtained a formula for recalculating the new shifted
values of { }.

To reduce the amount of calculations in practice, we
may assume under some hypotheses that the first vec-
tors on all clock-diagrams are directed in a certain way;
for instance, the angle of the first hands is equal to zero

ω1 = 0,

of course if r1 ≠ 0. We will refer to such a process as a
retrospect, and the value of θ used for this rotation will
be called the retrospect depth (or simply depth). It is
often useful to consider normalized representations of
lengths { }

where M is the magnitude

The series of normalized retrospective coefficients {(rn,
ωn)} will be referred to as the canonical form of the
function.

It is clear that, knowing the level a0/2, magnitude M,
and depth θ of function f(t), we can uniquely recon-
struct it via its canonical form {(rn, ωn)} as follows:

By T( f(t)), we denote the operator associating with
each function f(t) its canonical form {(rn, ωn)}. Then,
we may assert that

for any ∀α, γ ∈ �, β ≠ 0.
This implies that function f(t) may differ from its

transform, the function α + βf({t + γ}T) only by three
features, namely, the level, magnitude, and depth. As to
the rest, these function have the identical analytical
form, namely, the canonical form {(rn, ωn)}. Therefore,
we may consider that, under the aforementioned non-

11In the general case, if a function is equal to itself in period T/N,
then r1 = r2 = … = rN – 1 = 0 and the Nth hand should be aligned.

ωn'

rn'

rn'
rn

M
-----,=

M
2

rn
2
.

n 1=

N

∑=

f t( )
a0

2
----- M rn n t θ–( ) ωn+( ).cos

n 1=

N

∑+=

T f t( )( ) T α βf t γ+{ }T( )+( )≡
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strict assumptions, we have solved the problem of the
start-point choice by proposing the method for con-
structing a representation invariant with respect to the
phase shift. Below, we refer to this method as the
method of clock-diagrams.

In the next section, we present an example of the use
of the clock-diagram method in the problem of auto-
matic visual orientation in the space.

SOLUTION OF A TYPICAL PROBLEM 
BY THE METHOD OF CLOCK-DIAGRAMS

In the section Spectral Invariants of the Choice of
the Start-Point. The Clock-Diagram Method, we have
demonstrated a method for recognition of periodic
functions as functions of quite arbitrary nature. This
method is very usefully applied to problems of contour
recognition, where it is required to eliminate the uncer-
tainty in the choice of the vectorization start-point. It is
for solving this problem that this method was initially
developed. Then, it was suggested testing the universal-
ity and efficiency of the developed apparatus in solution
of another problem of pattern recognition, which is also
connected with a problem of the type of the start-point
choice, namely, the problem of automatic visual orien-
tation in space with the help of the panoramic photog-
raphy.

The statement of the problem is the following.
During the learning process, the recognition system

is provided with a few photos made on a certain terri-
tory from different points. Each photo contains an
image of a panoramic perspective (photo about 360°);
moreover, the standpoint and orientation of shooting
are determined for each shot.

During the recognition, the system should process a
panoramic photo made by a mobile object from an
unknown point with an unknown orientation of shoot-
ing and, possibly, with a high level of heterogeneous
noise. The system must, in a short time, determine the
location of the object as the most probable among all
known locations and specify the orientation of shoot-
ing.

Since the topology of the image of the panoramic
perspective is that of a cylinder, it is logical to consider
values of colors along horizontal lines as periodic func-
tions whose period is equal to the photo width. For sim-
plicity of the recognition scheme being designed, we
associate with each photo the periodic function whose
values are arithmetic means of the brightness of all
points of the image column with the same abscissa.
This univariate periodic function will be referred to as
the trace of the image. The further recognition process
will be based on comparison of image traces.

As experimental data, we take a panoramic image
made on a terminal of a seaport. We intend to learn the
system to recognize pictures taken from different
points. Moreover, we suppose that meteorological con-

ditions may vary, and the photos may be significantly
distorted by dust, glares, and other factors. All used
photos are presented in Fig. 5. Under each photos, we
present a strip of brightness that corresponds to values
of the image trace. Applying operator T( f(t)) to the
trace considered as a univariate periodic function f(t),
we obtain the canonical form presented as a clock-dia-
gram for each photo.

In the numerical experiment, the first three photos
(A, B, and C) were entered into the system as learning
objects, while the last three photos (1, 2, and 3) were
entered as objects to be identified. On the basis of anal-
ysis of mutual correlations of the canonical forms, the
system concluded correctly that the probability of the
fact that photos (1, 3) were shot from a point located not
far from the point corresponding to photo (A) is very
high and the similar probability for the pair (2) and (C)
is rather high.

Despite the high level of distortion of the images
and displacement of the images with respect to one
another, the system detected all real relations and made
none erroneous conclusions, determined, with a high
precision, the most probable point of shooting and the
value of mutual disorientation in the photos. It used just
the amount of computer time and memory that is nec-
essary for generation of Table 3 composed of quantita-
tive estimates for correlation of the first 20 coefficients
of the canonical forms of the corresponding photos.

As a result of the numerical experiments, the high
applicability of the derived estimates has been estab-
lished to the solution of typical problems such as the
automatic visual orientation in space of an object which
can generate or scan around it a strip of brightness (illu-
minance) of the panorama.

Fig. 4. Tetouev’s (Titúlany’s) mark.

Table 3.  Quantitative estimates for the probabilities of the
shooting points

Photo 1 2 3

A 0.9987 0.0392 0.9998
B 0.0612 0.2085 0.0589

C 0.2108 0.8091 0.1921
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CONCLUSIONS

In the paper, we propose some methods for visual
information processing, which are based on fundamen-
tal concepts of functional and statistical analysis. The
adequacy of obtained numerical-analytical estimates
demonstrates that there exists the possibility for solving

even principally new problems (such as pattern recog-
nition) by means of classical well-known concepts.

The rigorous mathematical concepts such as func-
tional measure, approximation, and some other are, in
fact, much less abstract than they were considered
when investigations started. On contrary, licking all
creation, the orthogonal expansions of functions detect

(‡)

(b)

(c)

(d)

(e)

(f)

(a) (b) (c) (d) (e) (f)

Fig. 5. Photos of the landscape panorama made from different points, as well as traces and clock-diagrams corresponding to these
photos.
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within their theory quite adequate alternatives to rather
complex concepts from the application domain. For
instance, an “intelligent” machine provided with the
“spectral” understanding of the geometrical shape can-
not be confused by the phrase: “Masha’s form is … how
it can be explained, something average between Leili’s
and Natasha’s forms.” What will happen, and how these
words will be understood by our “silicon intellectual”?
Most probably, it will understand them literally and will
directly average the corresponding values from the first
and second series of coefficients. As a result, it will
obtain the representation of a form (that is noticeable),
which is really similar to both the previous forms in our
human opinion.

Continuing these arguments, we would like to ask a
series of questions. How can it be checked whether a
given set of well-known forms is sufficient for descrip-
tion of an arbitrary person? How one can exclude forms
useless for this description such as Masha “linearly
dependent” of Leila and Natasha? To what degree such
photo-robots are adequate? etc. To develop, for
instance, artificial intelligence, it seems to be useful to
construct in perspective an “orthogonal” theory of such
nonstrict human concepts.

It is difficult to estimate the similarity of objects on
the basis of only the similarity of their contours if the
objects split into a group of contours. This forces us to
create an algebra on the set of these groups in order to
estimate adequately the relations and operations over
them. For instance, retrieving a certain face in a file, we
should pay attention to similarity of eye slits and, obvi-
ously, face profile rather than to coincidence of the
form of lips which can be easily changed (face-paint-
ing, calogen, etc.). This results in necessity of creation

of an evaluation function in the three-dimensional
space (“lips,” “eyes,” “profile”).

In conclusion, note that the proposed methods may
be surely generalized to the multidimensional case and
adapted to particular conditions of problems being
solved. This is valid, for instance, if the clock-diagram
method is used in the case of a bivariate function on a
topology of a torus rather than that of a cylinder.

REFERENCES
1. A. F. Nikiforov, S. K. Suslov, and V. B. Uvarov, Classical

Orthogonal Polynomials of a Discrete Variable,
Springer, Berlin, 1991.

2. F. F. Dedus, L. I. Kulikova, A. N. Pankratov, and
R. L. Tetouev, Classical Orthogonal Bases in Problems
of Analytical Description of Information Signals and
Their Processing, Faculty of Computational Mathemat-
ics and Cybernetics of Moscow State University, Mos-
cow, 2004.

Tetouev (Titúlany) Ruslan Kur-
manbievich. Born 1976. Graduated
from the Kabardino–Balkarskii State
University in 1999. Works as a
researcher at the Institute of Mathe-
matical Problems of Biology of the
Russian Academy of Sciences. Scien-
tific interests: transformations in the
space of expansion coefficients,
numerical–analytical methods for
determining parameters of models,
extraction of “random” component of

signals, prediction of dynamics of synergetic systems, inves-
tigation of genetic sequences, and prediction of genes. Author
of one tutorial and three papers.




