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TraX for Beginners




Welcome to “Using TraX”, the TraX tutorial. This tutorial has been specifically
written to accompany TraX version 1.1. When you purchased TraX you received two

manuals, a Reference Manual and this tutorial called “Using TraX”. In attempting
to keep things brief and to the point, many of the details of TraX are found only in the

Reterence Manual. You do not need to study the Reference Manual before using this
tutorial but you should at least review the first three sections of the Reference Man-

ual to familiarize yourself with TraX before working on these lessons. Although
performing the lessons in this tutorial will teach you most of the important TraX
commands and give you a good appreciation of the power of TraX to analyze and
simulate dynamical systems, you may, however, want to have the Reference Manual

handy while going through the lessons here. Specifically, Appendix A of the Refer-
ence Manual which lists all of the key sequences of TraX and is especially useful for

TraX beginners.
Typographic conventions used in this tutorial

The tollowing typographic conventions are used throughout this manual:

Typetace Description

KEY TERMS Text in Courler typeface indicates a specific term, punctuation
or mark that you must type in exactly as shown, although case is not
signtficant. This typcface also indicates the response of the program

or what you’ll sce on the screen.

(KEY NAMES ] The names of keys or key scquences are shown as they appear on
the keyboard, for example, the function key F3 is shown as (F3) and

th¢ two-key combinaton CTRL-F7 is shown as (Ctri-F7 )

‘Whencever a two-Key combination appears, the first key (the Con-
trol, Alt or Shilt key) must be depressed first, and while holding this
key down, press the second key and release both keys. Note that
is the backspace key while (¢ is the left directional arrow.

This 1s the ENTER kev and whenever it s pressed the information
cntered preceding the ENTER key 1s sent to the program for
processing.  This symbol 1s shaded to emphasize its importance.

f(x),ax/dt,2in,¢  Mathematical cquations are printed in an italicized typeface.
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Lesson 1. Starting TraX and navigating through the TraX Archives

In this first lesson you'll learn how to invoke TraX and how to navigate through the
TraX Archives. The TraX Archives is a collection of equations which are stored by
you, the user. The Archives has a tree-like form and its division into branches or
levels as well as the names of the sections are determined by you. In addition, there
- may be many different Archives although only one Archive can be loaded per TraX
~ session. Multiple Archives, however, are especially useful in multi-user settings, such

as 1n the classroom.

Each level of the Archives stores either an equation, a group of equations or an
equation state. An equation state is a set of values which are related to specific

~equations, these include such things as the values of system parameters or screen
attributes which were saved during a TraX session. '

The stored equation states allow you to restart a TraX simulation using the related
cquations from the point where you left off and therefore, you can interrupt a TraX
session at almost anytime and save your work quite easily. Another useful applica-
tion of archived equations and stored states is using them as an example to speed up
the development of new models. For example, if you decide to extend or modify a

model system which is already stored in the Archives, you can essentially copy your
previous work into a new Archive section, edit this model and save it with a new

NAalre.

In addition to the Archives mode there is the Investigation mode where yOu create
and edit models and conduct simulations. Keep in mind, however, that the only way
to reach the Investigation mode is to pass through the Archives, which 1S why we’re
discussing the Archives first. Let's now enter TraX from DOS by following the com-
‘mands below (we’re assuming that the TraX programs and the Archives called tut
all reside in a directory on drive C: called, appropriately TRAX (or the TraX
programs all reside 1n a directory on vour DOS PATH):

C:\TRAX: trax tut

This command invokes TraX and automatically loads the Archive named tut, which
-1s short for tutorial. In a few seconds the opening screen should appear (Figure 1).
When you see this screen, press any kev and you will be placed into the Archives and
you'll be, appropriately enough, in the Archives mode. You’ll also be located at the
tirst or root level of the Archives (Figure 2a). To travel through the Archives, use the
directional arrow keys ((4), (+), (¢JJ and (3)). The (*) and (3) keys move the cursor
within a current Archive level and the (3) and (& Keys move you to the next or the
previous level, respectively. Now we’ll follow the Archive path, beginning from the
root level, which goes Differential equations Predator-prey model
(Figure 2). Now on the screen (and reproduced in Figure 2a) you’ll see that some



entries are marked with an asterisk (*). This indicates that this level contains groups
of equations. Notice however, that in Figure 2b each particular equation is marked
by =, and in Figure 2¢, stored states related to the equations named Predator-
prey model are marked by either a + or a -, indicating whether a plot (picture) is
stored (+) or not (-).
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Figure 1. 'The opening screen of TraX.
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Select type of dynamical system (1,0l) and press -->_ Help - FI, Quit - F2

‘ Diflference equatiens
' Diflerential equations

)

Iigure 2a. The structure of the TraX Archives: the two root levels of the archive are
marked with an asterisk (*) indicating that they are groups of equations.




Select/Spectily dynamical system. Help - Fl., Quit - F2

Ditfereatial equatiens
Predator-prey model
Nonlinear peadutum with dampiag
Bi-Jlocal predater-prey model
Lorenz system
lorenz system wsing the variatiomal equation

- Figure 2b.  The structure of the TraX Archives: the second level under the Di f—
ferential equations. Equation groups are marked by =.

Select state and press ENTER. Help - FI, Quit - f2

Differentia!l equations
Predator-prey mode!
Initiat state for lesson 7
Phase portrait
J windows |
- Phase portrait made by a3 hkeystrohe macte

|
| .
. } J
Figure Z¢.  'The structure of the TraX Archives: the third level under the cquation
group Predator-prey model containing stored states. These are
-marked with a + or a - to indicate whether they contain a stored picture

(+) or not (-). | '

Within the TraX Archives the two root levels, Differential equations and
Difference equations are the only fixed levels within the TraX Archives; they
cannot be renamed or deleted. The creation and naming of all other Archive levels,

4



hoWever, 1s under your control. Figure 2 illustrates that following the two root levels
all the other levels have been ordered according to the lessons in this tutorial,

although there are many possible ways of ordering these systems. For example, you
could classify the equations by their dimension or by the subject that they deal with.

‘The equations included in the Archives may be displayed on the screen. For example,
to display the equations named Predator-prey model, set the cursor on this

~entry and press (Shift-F1]. The screen should now appear as shown in Figure 3.
Press any key to return to the Archives. You should now travel through the Archives

to review the content. You will see some equations and states which are used in the
following lessons. Also notice the content of the on-line Help system which is acces-
sible by pressing (FU; Help is available throughout TraX although the content of the

Help screens depends upon the TraX mode.

dX/dtex*(x-pl)*(l-x)-x"y
dY/dtex*y-p2°'y

Press any hLey j

Figure 3. 'The display of the equations stored in the Archive as Predator-prey

model.

Now we'll learn how to introduce a new group of equations, rename them and delete
them trom the Archives. First, move to a position within the Archives as shown in
Figure 2b. Next, press (Lomie]) to create a new level or more precisely, a new vertex
within the tree. When a prompt appears, enter the name of this new equation group
and then press (< followed by (¢). Following this, the name you entered will appear
in the list marked by an asterisk (*). Press (#) to make sure that this group is empty
and then press to return to where you started. "To rename this equation group
press (1) and edit the name in the standard way. Finally, to delete this cquation group

O



press (Det) and after the prompt confirm your intention to delete by pressing (y) (for

Yes). After you feel comfortable using the Archives press to quit TraX and return
to DOS. '



Lesson 2. How to simulate ordinary differential equations

In this lesson, we'll learn to evaluate and draw the trajectories of ordinary differential
equations (ODEs). We’re assuming that the equations which we’ll use for this lesson
are already in the TraX Archives (Archive tut). For this lesson we’re going to use

the predator-prey model of Bazykin (1985):

- dx

L —= -a)(l-x)—-x

—=x(x-a)(1-x)-xy

; (1)
_}_/zxy—by

dt

In this system, x represents the density of the prey population, v represents the
density of the predator population, and a and b are parameters. To begin, invoke
TraX trom DOS and in the Archives find the differential equations named
Predator-prey model. Press (Shift-F1 J to display these equations. Notice that
IraX uses specific notation for specifying equations (see Figure 3). For example, x

and y represent the state variables x and v, and p1 and p2 represent the parameters
a and b, respectively. After checking the equations, press (3) and enter the list of the

related states. Select the state Initial state for Lesson 2 by placing the
cursor on this state and press (<. Now we’re ready to begin Lesson 2.

When the Investigation mode is loaded the screen will appear as in Figure 4. There
are three areas on the screen: the Parameter window on the right, the Graphic win-

dow on the left and the Information line on the top of the screen.
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Figure 4. In the Investigation mode, the screen contains the Parameter window
(right), one or more Graphic windows (left), and the Information line
~(top). '
The Parameter window exhibits numerical values and indicators (or toggles). There
are six entries which set the limits of the graphic windows to visualize the solution
curves, these are: Tmin=0, Tmax=100, Xmin=-0.1, Xmax=1.2, Ymin=-
0.1, and Ymax=0.8. The entry T0O=0 represents the initial value of time variable ¢
(t.e., TO is regarded as a lower boundary and Tmax is the upper boundary of the
integration interval). The entries X0=1.1 and Y0=0.2 show the current value or
position of the initial conditions and the entries P1=0.2 and P2=0. 65 display the
current parameter values of the model. The other information in the Parameter
Window will be discussed in next few lessons so don’t worry about: it now.

RHEE
The Graphic window shows a portion of the phase plane x =y which corresponds to
the above limits. The position of initial point of the trajectory 1s m;;ﬂgfed by a plus sign
(+); this is also referred to as the Initial Point Indicator or IP1. N qw, press (£8) to plot
the axes and then press (1210) to begin evaluating and plotting the trajectory (in TraX
this 1s done simultaneously!). The trajectory will appear in the Graphic window as
shown 1n Figure 5. The elongating bar on the left side of the Graphic window indi-
cates the progress of the computation over the specified integration interval. During
computation the limits of the current time interval, as well as current integration step

h, are displayed in the Information Line on the top of the screen. The Integration step
may be varied automatically by the ODE solver to minimize computation time and

control accuracy. When the simulation is finished the Information Line will exhibit
the final coordinates of the trajectory.
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Figure 5. Computing and plotting a trajectory of the predator-prey model (1) with
axes plotted. '

To interrupt a simulation at any time, press (Esc). Press (F10)Jonce more to continue
computing the trajectory following an interruption or if the time interval has ended.
[f the time interval has ended, the simulation will proceed using the same time inter-
val length as before. Thus, (¥10) starts or continues a simulation. Set some new
initial values and compute a new trajectory ((F19)). To set a new initial point, move
the IPI in the Graphic window by pressing either (¢), (+), (¢ or (). Notice that when
you move the 1Pl the corresponding initial values in the Parameter window are
updated. Use (= to move the IPI more quickly (first specify the direction to move the
[PI with the directional arrow keys and then use (). When you have set the new
initial point, press (I710) to begin evaluating the new trajectory.

It the solution does not fall within the graphics window the computation will still
proceed, although you will not sce the results drawn on the screen. When this hap-
pens a special marker (a reverse color . x) will appear in the upper left hand corner of
the Graphic window. If the IPI is out of bounds you can still run a simulation but only
that part of the trajectory which falls within the window limits will be observed. You
can also simulate trajectories in the backward time direction (for ODEs only, how-
~ever) and in this case, ¢1s decreased starting from To. This type of investigation can
give you some 1dea of the “prehistory” the trajectory. To initiate a simulation in the

backward direction press [t9).

1()



You should be aware, however, that a backward or reverse time simulation often
leads to a decrease in the integration step because of variables which grow without
limit (in absolute values). When no or little progress is being made you can either

interrupt the simulation by yourself ((Esc)) or you can wait until TraX aborts the
simulation because the mintmum step size Hmin is reached (the default value of

Hminis 1.E-07)L

Now we’ll construct a phase portrait of the model as shown in Figure 6. First clear the
graphic window using and re-draw the axes ((£8)). Next, compute several new
trajectories beginning with initial points which lie on a vertical line; this means that
the initial density of predator is varied but the prey density is held constant. The
phase portrait in Figure 6 shows some differences between high and low initial pred-
ator densities. This particular case illustrates the asymptotic state the system reaches
after a long time. If the initial predator density is low enough, the system will stabilize
and reach an equilibrium or a steady-state. And for a large initial density, the system
will collapse; the organisms go extinct and the trajectory goes to the origin. There is
some critical predator density, however, separating these two cases which gives rise to
the so-called separatrix trajectory. This critical density is an important boundary
between two regions which correspond to a surviving or an extinet system. You can
find the approximate location of the separatrix trajectory by choosing the appropriate
initial points to begin the model simulation. It should be noted, however, that the
relationship between the critical predator and prey densities has a nonlinear charac-
ter and this follows from the shape of separatrix trajectory. '

N
In the Parameter window this valuc may appcar as O. 1D=06 indicating doublﬁffprpcision.
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Help - F1, Quit - FZ
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Figure 6. The phase portrait of the predator-prey model (1) plotted by varying YO
while holding X0 constant.

Betore tinishing this lesson and quitting, save the current state and the plot. Press
to save the state; you will be asked to name the state. Enter Lesson 2, phase
portrait, for example, and when thc'prompl Save the plot? (Y/N) comes up,
reply (). Next, leave the Investigation mode by pressing and you’'ll then be placed
in the Archives. Make sure that name of the state appears in the state list and then
press (2] to quit TraX and return to DOS. '



Lesson 3. Interacting with the Parameter window

In this lesson you will learn how to interact with the Parameter window. Let’s start

with the equation state which we stored in Lesson 2 (i.e., if you have just started TraX,
select the equations Predator-prey model and the stored state in the Archives,

and enter the Investigation mode). The state Phase portrait is also suitable and
if this state is selected, the saved picture will appear on the screen when you enter the

Investigation mode. '

You can only change an entry in the Parameter window if it is highlighted (i.e.,
appears 1n reverse color), and therefore, to change any entry you must highlight it

first. To move the highlight use or (0ot (#) and (¥) because these keys

move the IPI in the Graphic window). -*

Let’s try, for example, to change the initial value Xo0. Highlight the entry Xo=. . . and
type the number 0.5. When entering the new value it will appear first on the Infor-
mation line at the top of your screen, and after you press (< the highlighted value will
be updated. Notice that the IPI will be moved too. Reset the value of X0 to 1.1, the

value prior to pressing (). You can use (Shift-Esc] to return the parameter value to
the previous setting prior to pressing (<. '

Now let’s turn to the entries in the Parameter window which we have not yet discussed
(see Figure 4). Highlight the entry curves. This entry toggles between trajectories
‘drawn as curves and trajectories plotted using unconnected points. If you press (<,
curves toggles to points. To try this option, clear the Graphic window ((-7)), re-
draw the axes ((°8)) and initiate the simulation ((10)). The trajectory will be plotted
by points. Press (< to return to the curves setting which seems more natural for
displaying trajectories of differential equations (or more generally, of continuous-
time dynamic systems).

The next entry below, Merson, indicates a tvpe of ODE solver (an algorithm). The
Merson setting corresponds to the fourth-order Runge-Kutta-Merson method with
accuracy control. By toggling this entry you can select Euler which indicates the
sccond-order Runge-Kutta method, sometimes called the improved Luler method.
This method has a constant step size (h). Two other entrics, Euler+Fo0 and Mer-
son+F0 which appear in the toggle cycle are special modifications 1o the above
methods. They allow you to process a trajectory during its computation, for example,
to add random noise after each iteration. These functions will be discussed in detail
in the next few lessons. The next cntry, d = 0.0000100, indicates the absolute
tolerance for the Merson solver. You can set a new tolerance value by entering a new
value as previously mentioned for X0. Note, however, that TraX does not control the

relative error.

13



The entry h = 0.05 indicates the initial integration step size. The entry
windows 1 toggles to a second group of windows but we’ll leave the discussion of
this entry for future lessons. The last entry, x indicator, is a toggle to indicate
whether or not the current point of the trajectory should be marked by a cross X (the
X indicator) or not marked (the - indicator case). It should be stressed that
the actual number of parameters in the Parameter window menu is greater than the

~ number of lines which can be displayed. You can access any hidden parameter by
scrolling the highlight up or down using (PgUp] or (Pgbn). Don’t be surprised at the
empty lines, they are reserved for high-dimensional systems.

Here we’ll briefly comment on several other entries which you can see by pressing

(Pgbn]) to scroll the Parameter window downward (see Figure 7). The entries
HminO.1D-06 and Hmax10 show the minimum and maximum integration step sizes

allowed. ‘They are used by the Merson solver which will automatically adjust the step
size to achieve the desired level of accuracy. The next two entries On -1D50 and
Off 1DS50 represent the lower and upper boundaries, respectively, of a time interval
for which an evaluated trajectory is actually plotted. This option is useful for skipping
transient or beginning values and to plot, for example, only the asymptotic solution of
some model. The entries FO and so on are provided for the special processing of
trajectories or for specifying rather complex equations. They aren’t in use now and
you shouldn’t worry about them until later. Press and you will see the prompt
Current state isn’t saved. Save - F3, Quit - F2. Press 1o exit

without saving and then press (2] once more to exit TraX and return to DOS.

rwindows 1 i
% indicator!
! I
'Hming. 1D-86
1 Hax 13:
s ! . }
| On  -1D58"
] :Off 1058,
8-
'F1=
tp 72>

 F3=
' F4:=
'Fo=
:l’6=
¥
N E
'}9:=-

o o _———-—__—._.—___—-x I

-!—-l-—'-—--.-----...—.'

Figure 7. By scrolling downward in the Parameter window you can access hidden
' parameters and toggles.

14



Lesson 4. How to specify equations in TraX

In this lesson you’ll lcarn how to specify new equations in TraX. To learn how this is
done we’ll first consider the differential equations which describe a nonlinear pen-
dulum with damping: |

X

@Y

(2)

cly .
——=—a-sin(x)—-b -
pry (x) Yy

In this model, a and b are parameters. Run TraX and choose a position in the

Archives as shown in Figure 2b. Now press (ins) to start the specitication of a new
equation. You will be asked first to enter the name of this new equation. Enter an
appropriate name and press (<. You will then be asked for a sample (i.c., choose an
equation or a state as an example from which to copy) to be used for specification and
further work with the new equations. When choosing the sample you may move
through the Archives as before and select any equations or state. Let’s choose the
state Initial state which was used in Lesson 2 and which is related to the
equations Predator-prey model (e, move the cursor to Predator-prey
model, press (#) and then move the cursor to Initial state). After you have sct
the cursor on the example system, press (<. The screen should now look similar (o
Figure §; you are in the TraX Editor. |

Spectfy systlem
by tormuyla(s) (up te 10) ¢! 1t
and phase variables
AU VIR RS- IO SO S
Pormuia(s) may 1aveive
stmple patameters (g0-79) and

parametlers-fynctrons(f0-19)

dX/dte
X*{(x-pl)*(l-x)-x'y

y

Figure 8.  After entering the TraX Editor, you may start the specification of a RHS.
We use equations (1) as a sample when specitying equations (2).

1)



In simple cases, the notation of the RHS in TraX is very similar to a natural mathe-
matical notation (compare (1) and Figure 3). The RHS of the selected example (see
Figure 8) 1s now used as a prompt. You should modify this RHS to the RHS of (2).
In particular, you can delete the RHS of the example and then specify the new RHS.
When editing, the directional arrow keys as well as (Del) and (5 may be used. Specify
the RHS of (2) using x and y for phase variables and p1 and p2 for parameters.
- Complete each formula by pressing (). When the prompt dz/dt= appears
(Figure 9), press (<. This indicates that you've finished specifying the equations.
After the last (&, TraX goes directly into the Investigation mode. Keep in mind that

when you’re specifying the RHS, you can use (before the last (9 is
pressed!) to return to the previous formulas to check or edit them.

Specify system
by fermula{s) (op te 10) of 1
aed phase varrables I
X.y.2.a,v,w, 8,Q.7.5%.
Formagla{s) may tmveolve
simple pgatameters {(p0-p%) and
parameters-faunctroas(i0-19)

dX/dt~

dY/dt-
-pltsian(x)-p2'y

d2/dt-

J/

Figure 9. When d =/ dtappears, press (2 indicating that you have completed the
specification of the model.

You can access the Help screen now by pressing (1. If Help is invoked at this time,
however, only information about the TraX Editor will be displaved. In the Investi-
gation mode all the settings are as in the sample system used. Set them so that they
match those in Figure 10 and simulate the model ((F10)). Trv some different initial
points and investigate the phase portrait. Don’t forget that (F10) means simulate in
the forward direction and means simulate in the reverse direction. Also, you
should be reminded that after pressing a directional arrow key to move the IPI,
pressing (= will automatically execute that command again 32 times for accelerated
IPI positioning. In the Investigation mode you also can see the equations studied Dy
pressing (Shift-r1). When you are working with new equations it i1s helpful to save

10



the current state prior to leaving the Investigation mode, otherwise all the settings
made will be lost. To finish this session, press and enter the name of the current
state (for example state 1 ordefault state), and then press to quit.

=
\/ ,
!
- ':uindous 1
- /’_\: X fndicator
= - - o el e e o e e e o ;ﬁ‘u'

Figure 10.  The phase portrait of the nonlinear pendulum equations (2) using ¢z = |
(P1) and b = O (P0); this is the conservative case, i.e., no damping.
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Lesson 5. Interacting with Graphic windows in TraX

In the previous lessons only one graphic window was used for plotting trajectories,
and you did not have to worry about specifying this window. In this lesson, however,
you will learn to deal with several graphic windows, and in particular, how to specify

new windows and position them on the screen.

- We'll begin where we left off in Lesson 4. Start TraX and enter the Archives. When
the Archives is displayed, select Differential equations, press (*), select the
equation Nonlinear pendulum with damping, press (*) and then position the
cursor on the name of the stored state for equation (2) or select the state Initial

state (phase plane) and press (<.

Press and you will enter the Investigation mode. Set the entries X0 and YO as
shown in Figure 10 (use the (Pgtp) or (Pgbn) to move the highlight and then type In
new values and press (<J). Next, highlight the Parameter window entry windows 1.
This entry specifies an active group of graphic windows. There are two groups of
graphic windows in TraX: the first group is visible now and it contains one window
labelled x-y. To display the second group, press to toggle the entry to
windows 2. Two graphic windows will appear; the upper window is labelled t-x
and the lower is labelled t-y. Press (F10) to plot the evolution of the time series of
the two state variables, x and y (see Figure 11). Continue the simulation for another
time interval by pressing (1-10) again. Notice that the graphic windows which have a t
axis are automatically cleared before the next part of the solution curve is plotted.

x 1
'Trin Y.
: Treax 28,
' Xrmin -4/
! Xmax 1
:Ynin -2.9,
1 Y max 2.5,
' '
! '
'T18= g
Xg= 2.925
1 YB= B:
— — i - : :
Y _ 'P1= 11
1P 2= BE
{ _ i
curves :
:ﬂcrson :
. d=H. BBYB1 By’
\ h= -85
:ulndﬂus 2
' X indicator,
_— . — e | ' !

m

Figure 11. 'The time series graphs of variables x (top) and y (bottom) for equations
(2). The windows 2 group is used.
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Now we’ll plot the phase trajectory and the time series together on the same screen
(Figure 12). For this, a new window labelled x-y must be added to the existing set of
windows. Since there is no free space on the screen for a new window we’ll need to
resize the existing windows and then reposition them, for example, near the bottom of
the screen. Using TraX we can create overlapping windows, but we won’t do this
here. Press (F5) and the frame of the t-y window becomes dotted. ‘This means this
window is the active window. Only when a window is active can you move 1t, resize it,

relabel its axes or delete it entirely. Press (Shift-F7) to resize or move the active
window, which should be the t-y window. The directional arrow keys (9, ), () or

(+)) are used to move the active window and the keys (Shift-Lert), (Shift-Rignht),
(shift=Up ) and (Shift-Down ) are used to change the active window size (note that
window scaling will not be affected by changing the window size). Experiment with
the many possible variations and you will see just how flexible the TraX interface is.

After you have finished operating on a window, press (4 to fix it in position.

] El'nin B
v Teax 29:
|  Xoal -4
:Ynin -Z. 3
1 Y reax Z 5:
: :
'T8= B

¥ B= 9,

' I

! {

'P1= 1

:P2= B,

! ]

CuUrves :

_r : |

:Hcrson :

T d=8. BBBY1Y0Y,
7 ™  h= .85

'
Lo - .

R. . ,
\ / 'windous 2 :

- x indicator|

—1 L

Figure 12.  'The graphical window x-y for plotting the phase portrait and the win-
dows t-x, t-y to show x and y as a function of t located on the same
screen. The windows 2 group is used. '

Now, select the window t-y (@),' editit ((Shitt=17)) and decrease it’s vertical S1Ze,
and then move it to the lowest position on the screen like that shown in Figure 12.
Complete this operation by pressing (<. Next, resize and move the t-x window In 4
similar fashion. To access this window, press #5); vou probably have noticed by now
that this key cycles through all the windows making the next window in the list active
with each keypress. The final position and size of the window t-x should appear
stmilar to that shown in Figure 12.



Now we’ll specity the new x~y window. Press (ins)and a small window labelled t-x
will appear 1n the upper left corner of the screen. Here t and x are the default names
for the abscissa and the ordinate. You should first increase the size of this window
and then relabel the axes. Do this now: first resize the window ((Shift-F7)) and then
relabel the axes; press (Ctr1-¥7 ] to rename the ordinate or y-axis (rename it Y) and
press (Ctr1-F8 ) to rename the abscissa or x-axis (rename it X). Your screen should

- now look like that shown in Figure 12.

To preserve the results of your work on the window’s design, save the current state
(F3)). Now you can plot a trajectory in the windows you have designed. Plot the axes

(F8)) and initiate the simulation ((F10)). At the end of the time interval the screen
should appear simuilar to that shown in Figure 12. Continue the simulation by press-

ing (F10). Be sure that only the windows having a t axis have been cleared before
plotting the next part of the solution curve.

Compute some other trajectories using different parameter values. You will see
some advantages and shortcomings of using two kinds of plots at one time. You may
want to clear only one window and to do this, make the window active (£5)) and then
“clear it by pressing (Alt-F7]. You should recall that pressing clears all of the
graphic windows at one time. Now you've learned the basics of the TraX graphic

window interface.



Lesson 6. More about Graphic window functions

In this lesson you’ll learn to use windows with nonstandard axis labels (ie., those
which are not t, x, ory, etc.). Nonstandard axes will need to be scaled individually
and we’ll discuss this problem as well. This lesson is an extension of Lesson S and
we’re proceeding with the investigation of the equations (2) which you worked with in
the previous lesson. Start from the position shown in Figure 13 (e, enter the
~ Archives, select Differential equations, press (3), select Nonlinear pen-~
dulum with damping, press (3}, select the state you saved in the previous lesson
or the state Three windows. .., press (<4, wait for the Investigation mode to set up

and then press (F10) to begin the simulation).
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Figure 13a. In the center window, the enerey function /2 - - cos(N) as
function of tfor the solution of equations (2) is plotted: the conservative
case of no damping is shown (b = 0).
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Figure 13b. In the center window, the energy function y*/2-a- cos( x) as a

function of ¢ for the solution of equations (2) is plotted: the non-
conservative case of damping is shown (b =0.2).

0.1. Window limits

First, examine the entries Tmin, Tmax, Xmin, and so on, in the Parameter win-
dow and the limits of the graphic windows as well. To do this, press several times
in order to make all the windows, including the Parameter window, active in sequence
(one at a time). When the Parameter window is active, you will see the limits for all
the variables. When a graphic window becomes active the parameter window is
automatically updated and shows only the limits of that active window. You'll recall
that all of the settings in the Parameter window can be changed. Thus, by activating
the Parameter window you can change some or all of the common or global limits,
and by activating another graphic window you get access to its individual or local
limits. Play with the Limits of these windows but pay particular attention to changes
made 1n the value of a common limit because this will automatically change the limits
~1n all the windows which have the same axis label. The opposite, however, is not true;
changing a window’s individual limits has no effect on the limits of any other window.
One other essential feature of TraX is that no automatic window clearing is per-

formed after rescaling. This is left for you to decide.

6.2. Using expressions to label axes

Now we’ll study the energy function:



2

E=)—/-2-—a-cos(x) . _ _ ' - (3)
on the solutions of equations (2). This function i1s constant when there 1s no damping

(b =0), and it decreases monotonically when damping exists (b > 0). Let’s use the
window t-x to plot £ against ¢ . For this you must first rename the window’s ordinate.

Activate the t-x window (press key until the frame of this window becomes

dotted) and then press to rename the ordinate. Type the expression
(y*y)/2-pl*cos(x) and press (&J; this is the new ordinate label, as well as the

rule for evaluating the value of the ordinate. Notice that the new entries OMIN and
OMAX appear in the Parameter window. These are the limits of the new ordinate in

the active window. Set their values to OMIN=-2 and OMAX=2 by highlighting them '
and typing in the new values. o

Now we’ll simulate the model and plot the evolution of the energy function over time.
Set the parameter values P1=1 and P2=0, and the initial conditions X0=2.925, and

Y0=0. Draw axes ((¢8)) and then begin the simulation ((£10)). The resulting plot (see
Figure 13a) illustrates that in the conservative case the energy function is really con- -

~stant along the trajectories. Try some additional initial points to observe the rela-
tionship between the phase trajectory, the time evolution of x and y, and the energy
function. After that you can study the effect of damping by, for example, setting

P2=0.2 (see I“lgpurc 13b). When damping 1s added the phase trajectory will spiral
toward the origin, and y(t), £(t).and —a will decay to zero (oscﬂlaung 1In the fist

- case and decaying monotonically in the second).

Now we’ll discuss how the initial point is set. You'll recall that in Lesson 2 we men-
‘tioned that the initial point can be set by either entering initial conditions or by

- moving the IPI directly on the phase plane. If we have only one graphic window there

is no problem with moving the IPI. But now we have three graphic windows, and
therefore to move the IPI you must activate the window first. There are two occa-
sions, however, when you won't be able to move the IPI along the abscissa or the
ordinate in an active window: (1) if the corresponding axis name is not time (t) or a
- phase variable (x,y, ...), and (2) if you use the directional arrow keys when the

Parameter window is active, this will change the x and y variables, an indirect way of

moving the IPI which we used in Lesson 2. For the problem in this lesson it is con-
venient to activate the window x-y and then set the initial point by. moving the IPI.

6.3. Cylindric phase space

Now we want to draw your attention to the fact that 4 natural phase space for equa-
tion (2) is a cylinder, not a plane. Although there 1s no special option of this kind in
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TraX, we can plot the phasé portrait on a cylindrical surface by redefining an axis, ie.,
use a circle variable to label one axis. We will use a 2 n-periodic function of x instead

of x in the x-y window. Let’s try to implement this idea.

Make the window x-y active ((FS)). Press to rename the abscissa and then
enter the expression x~p3*int (x/p3); this is the label of the new abscissa (here

~ int denotes the a function which return the integer part of a real number) and press
<. This expression defines a circle variable on [0, p3), where p3 is a period to be
specified by you. In this case p3 should be equal to 21 Since the new parameter p3
has been used in the expression, the additional entry P3=... will appear in the

Parameter window (you can reorganize the position of this entry by highlighting it and
using or to move (Le, drag) the entry up or down, respec-

tively). Set P3=6.28, but if you want to set the value with higher precision, first
highlight the entry P3=. . . and press (=). The prompt Compute: will appear on the
top of the screen in the Information Line. This means that you have to either specify
an expression or want to compute the value of an expression and assign this value to
the hlghhghted entry, e.g., P3. Type the expression 8*atn (1) (see Figure 14) and
press (& (function atn stands for arctangent). The desired value will now be assigned
to P3 (note that 8- arctan(1)gives a convenient numerical approximation of 2 ).

Betore beginning the simulation, set the limits for the modified window. The appro-
priate values are: AMIN=0, AMAX=6.28, Ymin=-2.5 and Ymax=2.5. Here
'AMIN and AMAX are the abscissa’s limits. Since AMAX is set to ?n, you can use the

compute feature (i.e., E]) to enter the value for AMAX.

Computle:
B*atn(lﬂ
— — = Ymax  2.5|
| . -
18- B'
:XB= 2. 9251
IYB: Bl
: :
'Pl= l:
:P2= U
P3= B:
' '
points E
| !
' He rson "
:d=B.BBBBIBB:
l' - BSI
luindous 2

- | x indicator,
e ——x-pIeint (x/p3) | G

Figure 14. 'The Compute: option is used to assign the value of 21 to parameter P3
with higher precision.
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- It will be convenient for the following experiments to have only one graphic window

on the screen to represent the surface of a cylinder. To delete each of other two

- graphic windows containing the t-axis, make each window active in turn, press (Del)
and answer Y to the prompt to delete the active window. After deleting both of the
windows, increase the size of the remaining window (use (Shift=F7)).

Experiment with changing the x-coordinate of the initial point (you’ll have to type
* these new coordinates in). Note that after the IPI crosses the window’s right border
It appears on the left, and vice versa. This is because of the circle variable used on the
abscissa. Simulate the model with P1=1 and P2=0. Use the points option instead
of curves. Try the curves option too, and you will see some peculiar pictures: do
you know why they appear this way? After some simulations you should obtain the
- phase portrait on a cylinder like that shown in Figure 15a. .
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- Figure 15a. Phase portrait of (2) on a cylinder plotted by points.

‘This discussion illustrates how the points option is useful for ODEs. Actually, the
‘trajectories on the cylinder may be plotted by curves t0o, as shown in Figure 15b. You
can derive this phase portrait yourself by using the state Phase portrait on a
cylinder plotted by curves. There are additional options concerning the processing
of the trajectory prior to plotting which are also useful and these will be discussed in
Lesson 11. Before leaving this lesson, save the last state ((F3)). '
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Figure 15b. Phase portrait of (2) on a cylinder plotted by curves.
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Lesson 7. The use of colors in TraX

If your computcr IS equipped with an EGA or VGA adapter and a color monitor, you
can use color graphics with TraX. In this short lesson you will learn to manipulate the

colors of windows and trajectories.

Let’s start with the state 3 windows of the equations Predator-prey model.
There are now three graphic windows on the screen and you can change the back-
ground color of each window, as well as the color for plotting the trajectories. First,
compute several trajectories with different initial conditions and second, activate a
-graphic window. To change the background color in the active window, press .
(Ctri=Fé6 ) Repeat this several times to see all the 16 colors available. Make sure

“that after a change in the background color, the active window is cleared automau-__-._._,_.._--,'

cally. To change the trajectory’s color in the active window, press (Ctri=F5 ), The

window’s frame and the IPI will change their colors. The new color will be used for .

all future simulations (Le., for the next trajectories) until you change 1t.

Changing the color of a trajectory, however, does not erase the trajectory nor does it =~

atfect the colors of any existing trajectories. This provides a convenient way to outline
special or unique trajectories. For example, in the phase portrait of Figure 6, the
trajectories corresponding to surviving and extinct ecosystems (Le., belonging to the
basins of two stable steady-states) can be plotted using different colors. N

Sometimes you may need mark a trajectory by a qpu:xflc color, for instance a separa-
trix, in all the windows at one time. To do this, set the color desired in the active

window and begin the simulation by pressing (AIt=F10] The same color will be used
- for plotting the trajectory in all the wmdous | -

You can also change the toreground and bacl\vround and colors in the Parameter
~window. The same keys as above should be used for this but remember, colors can

only be changed in an active window.



Lesson 8. How to simulate difference equations

So far we have only studied ODEs. This lesson is intended to show you how to deal
with difference equations, sometimes called iterated maps. Select the Archives entry
Difference equations and then select the equations Logistic map x’ =

Pl*x* (1-x). This refers the map
L x =a-x-(l-x) “ . ' - (4)

~which arises, in particular, in modeling population dynamics (see May, 1976). For the
sake of convenience, the name of the entry is the related formula. The real formula
for the map is specified in the TraX Editor in the usual manner. You may view the

formula pressing (Shift-F1]. Select the entry Initial state for Lesson 8in
the list of stored states for the chosen map. After entering the Investigation mode you

will see one graphic window n-x; this will serve as the window to plot the time evo-
lution of x (n is discrete time). The corresponding limits Nmin, Nmax, Xmin, and

Xmax can be observed in the Parameter window.

Press (F10) to begin the simulation with P1=2.8. You will see a trajectory which
approaches an equilibrium state (Figure 16a). It is plotted by lines since the option
curves 1s used (see the Parameter window) but you can plot it using the points
option as well. To continue simulating the trajectory, press again.
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Figure 16a. Simulation of the logistic map (4) for a = 2.8 (P1); the trajectory sta-
bilizes to an equilibrium point,



You’'ll recall that plots a simulation in reverse time for ODEs;' this option, how-

ever, has no effect for difference equations. The reason for this is that an inverse map

should be iterated for reverse time, but usually it is defined implicitly or undefined at
~all, as in (4). . o B
It is known that if the value of the parameter a in (4) is gradually increased more

complicated dynamics appear: these include periodic and chaotic orbits. Let’s illus-
" trate this phenomena using TraX and in doing this you’ll learn some more useful

- TraX options. '

If the parameter a crosses the critical value a = 3, a periodic orbit of period 2
appears. To observe this effect, set P1=3.2 and plot a trajectory. The result (see

Figure 16b) indicates that after some transients the trajectory stabilizes to a cycle of R B

~period 2. Next, plot the trajectory for P1=3.5 (Figure 16¢). You can see that it is
also asymptotically periodic, but it has a period of 4. To see the chaotic behavior, set
P1=4 and begin the simulation. You will get an irregular or aperiodic trajectory

~similar to that shown in Figure 16d. If you continue the simulation it will remain -

irregular.
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Figure 16b.  Simulation of the logistic map (4) for (1= 3.2 (P1); the trajectory illus-
' “trates period-2 oscillations. - S
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Figure 16¢c. Simulation of the logistic map (4) for a = 3.5 (P1); after the second
period-doubling bifurcation, an orbit of period 4 arises; '
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Figure 16d. Simulations of the logistic map (4) for a = 1.0 (P1); irregular behavior
(chaos) now appears.

Now we’ll learn a new option which is provided only for difference equations. High-
light the Parameter window entry power 1, which indicates the power of the map to

be 1terated. Set the value 2 for the power and repeat the above experiments. You
should see plots like that shown in Figure 17. Thus, for the second power of the map
(4), the equilibrium state remains the same, the period-2 oscillations turn into an
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equilibrium state, the period-<4 oscillations become period-2 oscillations, and the
chaotic trajectory preserves its irregular character. You may also try a power 4 map
to transtorm the 4-cycle into fixed point. This is a simple way to search for a stable
‘periodic orbit with an unknown period. Now, let’s change the window’s group (high-
light the entry windows 2 and press (). The graphic window x-x will appear. This
window’s abscissa and ordinate have the same label(x) and the same limits. This is a
‘special window for plotting the “l-dimensional staircase” which is a useful tool in
studying first-order difference equations or 1-dimensional maps. Plotting a line in

this window is similar to plotting a trajectory in a phase plane.
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Figure 17a. 'The same simulation as in Figure 16a but using degree 2 (power 2) of
- the map. ' | ' N
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Figure 17b. The same simulation as in Figure 16b but using degree 2 (power 2) of .
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o Fi_gure 17d. The same simulation as in Figure 16d but using degree 2 (power 2) of
the map. I o

Repeat the previous experiments using this special window. First, set P1=2.8 and
press (the curves option must be toggled on prior to this!). Note that the axes,
the bisector line, and the graph of the function defiming the right-hand-side of (4) will
be plotted. The points where the tunction graph intersects the bisector line corre-
spond to the fixed points of the map (i.e, the equilibrium states). Begin the simu-
lation and you will see a trajectory which tends to the fixed point (see Figure 18a).
Repeat this simulation with P1=3.2, 3.5, and ¢.0. The corresponding plots are

l shown in Figure 18b-d, respectively. In Figure 18b and 18c the asymptotic modes are

~ the 2-cycle and 4-cycle closed curves. If you want.to extract these cvcles from the
transients, press (Shift-1-10] after the trajectory approaches the cycle. The initial
point will then automatically be reset to the trajectorv's most recent point. Following
this, clear the window and start the simulation from the new mnitial point. ' .
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Figure 18b. The 1-D staircase plot of the logistic map (4): a = 3.2 (P1).
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'Figure 18c. The 1-D staircase plot of the logistic map (4): a = 3.5 (P1).
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Figure 18d. The 1-D staircase plot of the logistic map (4): a=4.0(P1).

Repeat these experiments with a power map (see Figure 19). Pay attention that when
P1=4, the continuation of a trajectory for very large n leads to a solution which {1lls

the entire part of the plane ‘This is typical of chaotic behavior.
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Kigure 19a. 'The same simulation as in Figure 18a but using degree 2 (power 2) of
' the map. ' '
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Figure 19b. The same simulation as in Figure 18a but using degree 2 (power 2) of
the map. -



Flgure 19c. The same snmulauon as in Flgure 18a but usmg degree 2 (power 2) of
- the map. -
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Lesson 9. The microscope facility

Sometlmes you may need to plot a phase portrait or some other picture in a large
region and then magnify some portion of it. We’ll learn how this can be done in TraX.

Let’s consider the Henon map (Henon, 1976):
‘=l-a-x°+y

- (5)

y' =b0'Xx

witha = 1.4 and b = 0.3. This map produces trajectories on the plane x - y which

tend to a limit set called a strange attractor. "The attractor has a complex structure and
through magnification you’ll be able to get a good idea of what this complexity means.

- Selectthe entry Difference equations inthe Archives, then select Henon map,
and then the Initial state for Lesson 9. After entering the Investigation
mode, plot the axes ((F8)) and begin the simulation ((F10)). The attractor you will see
is shown in Figure 20a. Let’s magnify one part of this attractor. First, you should
‘activate the window x-y (5)). Next, press (Shift-F4 ) and a small dotted frame will
appear in the upper left corner of the window. You can re-size and move this window
as you have already learned (i.e., you can move the window with the directional arrow

keys and you can change the window size with (Shift-Right ), (shift-Up ] etc.: see
Lesson 5 for a review). Place this small frame, which is now active, over the part of

the attractor which you want to magnify and press (< to store the mathematical limits
of the frame. To set these limits on the x-y window, press (Shift=r6 ). The limits
Xmin, Xmax, Ymin, and Ymax will be updated and displayed in the Parameter
Window. Clear the window (there is no automatic cledring!) and simulate again. The
selected part of the attractor will now be plotted according to the new scale, and
‘therefore, you have magnificd a portion of the original plot (see Figure 20b). You
mey need more iterations of the map to get an improved picture because the density
of points may decrease upon magnification. It is interesting to repeat the magnifica-
tion of this already magnified portion of the attractor to appreciate the real com-
- plexity of its geometrical structure. In fact, the local structure of attractor is similar to

the product of a line and an uncountable Cantor set!

Sometimes you may need to plot the entire attractor and the magnified portion on the
same screen but in different windows. To do this you'll need to specify a new window

with the same axes but with different limits. The limits can be set automatically by
pressing (Shitt-ro6 ) in accordance with the stored trame limits. Let’s see how this is

done..
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Activate the Parameter window and set the initial limits to Xmin=-1.5,

Xmax=1l.5, Ymin=-0.5, and Ymax=0.5. Next, activate the x-y window and
-re-size it to free the lower right corner of the screen for the second window. Activate -
- the window ((FS)), press and resize the window by using o

etc. Now press (Ins)to create a new window and press tobe

+ able to move it with the directional arrow keys. Move it to the empty part of the
screen, resize it and rename the axes to x-y (use and (Ctri-F8)). Now

there are two x~-y windows on the screen with the same limits; one in the upper part

- and another in the lower part. If the limits of each screen are pot the same, active
each window in turn with and observe what the limits are in the Parameter win-
dow. Set them equal if they are not equal already. Compute the trajectory (F10))and
the plots will be the same in both windows because they have the same limits.
Activate the first (upper left) window and then press and set the frame
over the portion of the map which you want to magnify and then press (<. Next,
activate the second window and press (Shift-F6), The second window will now
receive the new limits corresponding to those of the small frame overlying the full-

size map. Clear this window ((A1t=¥7]) and start the computation again. The screen
should look similar to Figure 21. Now you have learned a valuable and important

feature of TraX.

- lndicalur

windows

-

Iigure 20a. The strange attractor in the Henon map (5). A window for magnifica-
Lion appears in the upper right quadrant. S
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Figure 20b. 'The strange attractor in the Henon map (5) after magnification of the
small window (marked box) in Figure 20a.
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Figure 21. Using two graphic windows you can plot both the entire Henon attractor
' and a magnified area simultaneously. '

You can repeat this procedure by, for example, highlighting the lower window con-
taining the magnified section, press (Shift-F4 ] select a section of this magnification,

press («), activate the other window (F39)), press (Shift-Fé6]) to reset its limaits, clear
- the window with (A1t-17]) and you now have magnified an already magnified section
but in an alternate window. Save the result of this lesson by storing the current state.

AR

4)



You should be aware, however, that saving pictures requires much more memory
than saving only the equations and the state. For many systems which have an easily

reproducible trajectory, such as simple or non-stochastic systems, it is generally not
necessary to save the picture.
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Lesson 10. Using functions in equations

In this lesson you will learn to apply user-defined functions when specifying right-
hand sides (RHS) of model equations. Such functions may arise as a separately
defined part of a model or as common expression in a RHS. The important thing is
to have an opportunity to modify these functions independent of any particular
model. ‘TraX allows you to do this within the Investigation mode where you are likely
- to be changing parameter values. In addition, TraX provides a special option for

plotting the graph of a user-defined or a standard function.

Consider the third-order ecological model (Bazykin et al., 1983: Bazykin, 1985):

0/
a_';E:F](x)--z'F2(..\.')"'d'(-\'_y)

dy | I '

o oY) F2(y)-d - (7 - x) )
dz F2(x)+ F2(y)

——=qgrz—Z NI

d! Z

This model describes the time evolution of prey and predator populations assuming
that the prey population occupies two identical areas with migration occurring
between them, and the predators consume prey from both areas as if no border

between them exists.

Variables x and y in (6) represent the prey densities within each of the areas, and =
represents the density of predators. The function £/ describes the growth rate of the
- prey and £ 2represents a sort of fitness function. We’ll let the function /2 have the

sumple linear form:
[F2(x)=b-x, | ' . S (7)

and the function / / has one of two forms;

/*'l(x)=u-.x‘-(l'—e'.\')- o (8)
0T
Fl(x)=a-x"-(l-¢-x) ' | ' (9)

The third-order model (6) has been derived for studying how a spatial (or dissipative)
structure ariscs in an ecosystem. In this case that means there exists a stable steady-
state for the prey densities in each of the two distinct areas. We’'ll try both forms of

the tunction 7/ in this lesson.
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Select in the Archives the entry Differential equations and then press (#).
Next, press (Shift-ins]) and after entering the name of the equation into the TraX
Editor, specify the equations in the form shown in Figure 22. Pay particular attention
to how we denote the parameters of model (6): a=pl1, b=p2, c=p3, d=p4,
e=p5, g=p6. ThesymbolsaO,a/....,a9are the standard names of a function’s
formal arguments, and {0, {1,...,f9 are the standard names for user-defined functions.

dX/dte-
Fi(x)-2*F2(x)-p4*(x-y)

dY/dte
Fl(y)~z*t2(y)-p4"(y-x)

dZ/dt-
pétzt{(F2(x)+F2(y))/2-p3*1z

bl(a0)-
pl*tal*(l-p5*ald)

f2(a0)-
pl*tal

- Figure 22. Specification of the model (6),(7), and (8) in the TraX Editor.

After the equations have been entered (don’t forget about {(Shift-Esc ) if you need to
correct the formulas before fimishing), you will enter the Investigation mode.
Examine the context of the Parameter window (scroll to see any hidden parameters)
and pay attention to the entries Fl=pl*a0O*(1-p5*a0) and F2=p2*a0 which
contain the specified functions: these can be easily modified during the investigation.
You should be aware that these equations are already in the Archives and while you’ll
learn ‘TraX better by doing everything yourself, as in this tutorial, often, having
something to fall back on is equally useful. Look into the Differential equa-
tions archives called Bilocal predator-prey model.

It may be casier to follow this tutonial if you rearranged the order of the items in the
parameter window to that shown in kigure 23a. To rearrange the items in the
Parameter window first highlight the item which you desire to move and then press
(Cu1-rgUp J to move the item up or (Ctri-Pgbn o move the item down.
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Figure 23a. Simulation of the model (6),(7), and (8): phase projections.

Next, make the following settings: Tmin=0, Tmax=100, Xmin=0, Xmax=3,
Ymin=0, Ymax=3, Zmin=0 , dmax=2, T0=0, X0=2.5, Y0=0.7 , 40=0.2,
Pl=1, P2=1, P3=1, P4=0.05, P5=0.4, and P6=1. Now, begin the simu-
lation. The result is shown in Figure 23a; it indicates that the trajectory tends to an
Thus, the distribution of the prey becomes
spatially uniform asymptotically, although the initial distribution was nonuniform.,
Tty some other initial values but the result should be the same. After some numerical
experiments it can be concluded that model (6), using the functions (7) and (8), does

not have a stable spatial structure.

equilibrium point for which x =y .

Change to the group windows 2 and repeat the simulations ((F10)) by plotting the
trajectories in the three windows, t-x. t-y,and t-z (see Figure 23b); when you're

tinished return to the group windows 1. _




Kigure 23b. Simulation of the model (6),(7), and (8): time series of x, y, and z.

Now let’s try the second form of function #/ (9). To transform (8) 1o (9), nlace the
highlight on entry F1=pl*a0*(1-p5*a0) and press (4. Then the screen should
look like Figure 24. Edit the expression to obtain the formula F1=p1%a0*a0* (1-
p5*a0) and then press (). The appearance of the highlight in the Parameter window
means that the modified function has been accepted, otherwise an error message will
appear. Alternatively, you may select this new modification (9) from the Archives:

-------------

:Inax 189,
1 Xmin B,
| Xreax 3!
‘¥nin B:
:Ynax 3
1Znin B
' ZMax A
'18= 8
| XB= 2.9
1 ¥8= .7
'Z8- 2
' |
' '
:PII 1
' P2= 1,
'P3- 1)
| P4= 85
:PSI 4,
1 P6= 1:

press twice and then select the state Function F1 (as 1n (9) ).

Fl1(aB3 =
Ll=ads(1-p9=ad))

- Y 4

 P6=

'
'Fl=pleaBe(]
;F2=p2-au

|

1 Y max 3,
L Inin B!
' Zmax 2:
:TB= B,
 XB= 2.5:
Y8= 7!
' 2B- . L
' '
 P1= 1]
 P2= 1’
' P3= 1
:P1: . B
' Po- .4:
1

i

f

|

:

Figure 24.  Editing the function F1. Form (8) should be replaced by form (9).
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Now let’s simulate the modified system with the same parameters and nitial condi-
tions as above (see Figure 23). Figures 25a and 25b show that the distribution of prey
between the areas approaches uniform, but periodic oscillations have now appeared!
Tty some other initial conditions. If you set 20=0. 3 while retaining the other coor-

dinates the simulations produce the results shown in Figure 26a and 26b. Here, the
- trajectory approaches a steady-state but with different values of x and y. This

steady-state represents the nonuniform spatial structure of the prey population which
we were looking for. |

¢ l [—Z — -
_. | 7R
C H
| \
— — v e - Lm X
—Z
Y_.L

- Figure 25a.  After replacing (8) with (9) in the model (0), periodic oscillations
' appear: phase projections (compare with Figure 23a).
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Figure 25b. After replacing (8) with (9) in the model (6), periodic oscillations
appear: time series (compare with Figure 23b).
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—_— Y

Figure 26a. By varying the initial conditions, the nonuniform distribution of the
' prey over two areas (dissipative structure) is discovered: phase projec-
tions (compare with Figure 25a).
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Figure 26b. By varying the initial conditions, the nonuniform distribution of the
prey over two areas (dissipative structure) is discovered: time series
(compare with Figure 235b).

It 1s of interest to plot both the solutions X (¢) and v (L)using the same axes in order
to underscore the nonuniform character of the prey distribution. In ‘ItaX this can be
accomplished by overlapping the graphic windows. In this case, place the two win-
dows t-x and t-y on the same place of the screen (ie., on top or over one another)
and use the same limits for both abscissas and ordinates. Each of the overlapping
windows however, still retains its “individuality” and is assessable by making it active.
Let’s try this option. Set windows 2 and then activate the t-y window. Before
moving this window it will be helpful to change the background color (color monitors
only). Use (Ctri=Fb )10 select a different background color. Now, press (Shift-r7)
and move the window up and exactly over the t-x'window and press (<. Of course,
you can resize both of these windows to make then larger if you desire (see
Figure 27a: activate the windows one at a time with then press (Shif1-F7 ) and
‘use (Shift) and the directional arrow keys). When this is done, press (F10) to simulate
the model. The lower trajectory in the t-x, y window is the y trajectory. Now you’ll
see the convenience of using a different color to represent this trajectory of this state
variable. In addition, you may desire to label these trajectories by writing a comment
on the screen. To do this press (-3, move the text cursor with the directional arrow
~keys and then write your comment followed by (<. Writing comments on the screen

is particularly useful just prior to printing an image of the screen. Note, however, that
comments within a window may be crased if the window is cleared or the window

group 1s changed.
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Figure 27a. Using overlapping windows t-x and t-y, the difference between the
behavior of the prey in two different areas becomes more obvious.
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Kigure 27b.  Figure 27a illustrating the TraX commenting function for labeling the
trajectories. ' '

We'll finish this lesson by plotting function graphs. Activate the first group of win-

dows and delete all the windows (press (Del) when a window is active). Next, specity

a new window which has an abscissa X (use (Ctri-F8)) and an ordinate F1 (x) (use

(curi=17)). Set the limits of the window to: Xmin=-1, Xmax=3, OMIN=-0.5,

OMAX=1.5 and then press (6] (the new window must be active!). Then the graph of
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function F1 specified by (9) will be plotted as shown in Figure 28a. To compare the
graphs of I'1 given by (8) and (9), modity F1 once more to obtain the initial form (8)
(ie, highlight F1, press (<, edit the function, press (<J, make sure the graphic window
15 active and press (F6)). This graph will be plotted on the same screen, and the
resulting picture with two graphs is shown in Figure 28b. '

Figure 28b. Plotting the functiongraph tor both functions (8) and (9) together.
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Just 1n case you had some difficulty, all of the previOus]y mentioned experiments with
model(6) can be tound in the Archives under the level called Bilocal
predator—-prey model.



Lesson 11. The chaotic dynamics of nonlinear systems

In this lesson, we’ll learn how TraX can be used to Investigate chaotic dynamics in
continuous-time systems. As our first example, we’ll use the well-known Lorenz Sys-

tem (Lorenz, 1963; but see also Sparrow, 1982):

dx——O*x+o-

di s

dy z

——=rX-y-X: - . 10
oy "y X . _ ~ (10)
dz

——=XxX"v—-0-z

di 4

We'll analyze this system (10) using the parameter values o= 10,r =28 .and
b =8/3, for which a strange attractor exists. '

T'he aim of this lesson is not only illustrate some typical features of chaotic behavior
using TraX, but also to present some special features incorporated into TraX such as
constructing the next-maximum map and the Poincaré map, calculating the maximum

Lyapunov exponent, producing a three-dimensional plot of the attractor and studying
homoclinic and heteroclinic trajectories.  All of these procedures are based on the

computation of one trajectory and therefore, thev can be implemented in a special
trajectory processing form which operates during trajectory computation. You’'ll also
learn how to write programs in the TraX programming language to process trajecto-

ries during their computation.

11.1. Chaotic behavior

Sclect the differential equations named Lorenz system in the Archives and then
select the state Initial state for this lesson. -After entering the Investigation

mode, display the equations by pressing (Shitt=r1). Note here that the parameters
0,r,0are denoted as p1, p2, and p3, respectively. o

Initiate computation and the computed chaotic trajectory will be plotted simulta-
neously in four windows: x-y, x-z, y-z and t-x (see Figure 29). You can speed
up execution by turning off the indicator of the current point (toggle the Parameter
window entry x indicator). Also, the more graphic windows which are in use, the

slower the program will perform.
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Figure 29. Chaotic behavior of the Lorenz system (10) displayed in three phase
projections and one time series plot.

11.2. The sensitive dependence phenomena.

The sensitive dependence of solutions to the mmitial conditions 1s the most typical and
remarkable feature of chaotic systems. To study this phenomena in the Lorenz sys-
tem, perturb the initial conditions a little and recompute the trajectory. To distin-
guish the trajectories with close nitial conditions, change the color ol the new
trajectory before you recompute it ((Att=#10 Jallows you to use the color chosen in
one window in all of the graphic windows at the same time). '

A similar phenomenon may be observed during a study of the influence of the ODL
solver type and the tolerance on the chaotic trajectories. Some related results are
presented in Figure 30. They correspond to the computation of the same trajectory
(.e., using the same intual conditions) but with ditterent tolerances: d=.0001 and
d=.00001, respectively. You should experiment and pertorm sumulations by varying
dfrom 10 7 to 107° Also, examine this behavior with the Euler solver. Because the
IFuler solver has no accuracy control (i.e., the step size remains constant), the only
control parameter for this method is the iniual step size for integration, h which
remains constant throughout integration. The values of hin the interval {0.005, 0.1}

arce of interest in this case.
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Figure 30.  The phenomena of sensitive dependence on initial conditions illustrated
by using two different tolerances of the Merson ODE solver:
d=0.00001and d=0.0001. The two different trajectories which result

are both plotted together on cach of the two plots.

Notice that the sensitive dependence phenomena is more visible on the graph of
x vs. t (Figure 30). It is easy to see on this graph that the numerical solutions corre-
sponding to different tolerances diverge sharply after some transients. This diver-
genee can also be found in phase orbits if you observe the plotting over time. It
should be stressed, however, that the resulting attractors for both experiments turn

out to be quite similar.

11.3. Homoclinic trajectory.

It 1s known that some features of chaotic behavior may be better understood if the
stable and unstable manifolds of saddle equilibria and limit cycles are studied. Here,
we will study (numerically) an unstable separatrix of the saddle point lying in the

origin.
Forr > 1, the equilibrium point £(0, 0, 0)is a saddle equilibrium with one positive
and two negative eigenvalues. The positive eigenvalue is |

> 7
A=(=0-1+(o- 1) +q0r)/2
~and the corresponding eigenvector is

U=(1,(06+A)/0.0).
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By an unstable separatrix we mean a forward time trajectory with initial conditions
taken close to the saddle point £ on the vector tor —v. Unstable separatrices yield
an approximation of the unstable manifold of the saddle £ if the distance from the

Initial point to the saddle point is small enough.

The only specific feature of computing an unstable separatrix is that the initial point
should be appropriately chosen. We’ll choose them as follows:

(x0,y0,20)=(e,e-(0+N)/0,0),

where € << 1 is a parameter. To provide automatic evaluation of the initial conditions
according to above formula, do the following:

(1) Highlight the entry Fo=. .. and press (<.

(2) Specify the function Fo as follows:

FO = {1f a0=0 (x0=p4 y0=p4*(p1—1+sqr((pl-—l)"2_+4*p1*p2))/2/pl
z0=0} } 0 (+. |

(3) SetP4=0.001 (P4 stands for parameter ).

(4) Highlight the entry Merson and toggle it to Merson+Fo.

Now you can begin the simulation with arbitrary initial conditions, Immediately after
starting, the initial conditions should be changed because of the calhng function Fo.

The updated initial conditions will appear 1n the Parameter window.

Actually, if you’re using the solver Merson+F0 or Euler+Fo, the function FO is
called for processing at the initial point of the trajectory and after each integration
step. In this case it is used for calculating the special initial conditions which lic on
the unstable eigenvector of the saddle point. Note that the variable a0 is a formal
argument of the function Fo, and by definition it equals to zero only at the initial

point.

Compute the unstable separatrix for various small values of P4, either positive or
negative, and for various values of the system parameters P1, P2, and P3. Make
sure that the function FO performs automatic recomputation of the initial conditions

tor each set of parameter values.

It 1s interesting to simulate the unstable separatrix to find the homoclinic trajectory
when the unstable separatrix approaches the saddle point £ as tincreases. Since the
homoclinic trajectory arises for only certain critical parameter values, you need only
to vary the system parameters in order to find this trajectory. Perform several
experiments by varying the parameter P2: this parameter corresponds to r in (10).



Figure 31 shows that between the parameter values P2=13 . 9265 and P2=13.9266
a homoclinic trajectory exists. Also, note that the state Homoclinic trajectory

may be used for these experiments with the unstable separatrix.
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Figure 31a.  Simulation of the unstable scparatrix in the Lorenz system (10) using
r=13.9205(P3).
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Figure 31b. Simulation of the unStable'separatrix in the Lorenz system (10) for
r=13.9266 (P3). This plot shows that between r = 13.9265
(kig.31a) andr = 13.9264 a homoclinic trajectory arises. -
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11.4. Next-maximum map.

The next-maximum map is a one-dimensional map defined as follows: if z(n) and
z(n+ 1)are two consecutive local maxima of the variable z on a solution of system
(10), then = (nn + 1)is regarded as an image of z(n) by the next-maximum map. To
implement this map in TraX, do the following or use the state Next-maximum map
located 1n the Differential equation archive named Lorenz system.
Specify the program for function FO as follows:

FO={glo 11,12 loc 10,13,14 if a0=0 {11=0 12=0 13=0 14=0)
10=rhs if 1z<0 (if 14>0 (11=12 12=13-(2z-13)/(1lz-14)*14))
13=z 14=1z) O - |

Next, set the ODE solver to Merson+Fo0 and the mode to points. Specify a new

window with the abscissa named {glo 11}11 and the ordinate named {glo
12}12. Set the limits for this window as AMIN=30, AMAX=45, OMIN=30, and

OMAX=50.
Now start the computations and when finished, the plot should appear as shown in
- ~Figure 32. You can see that the points in the new window lie approximately on a

curve having a cusp. This curve may be regarded as a graph of one-dimensional map
modeling some essential features of the Lorenz attractor.
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Figure 32.  Computation of the next-maximum map for the Lorenz system (10).

The are some particular features about the current program which deserve mention.
The variables 11 and 12 are reserved for storing the two consecutive maxima of = (t).
These variables are declared as global and their values are computed in FO and then
used as coordinates in the new window, where they also are (jécllared as global.
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Vanables 10, 13, and 14 in Fo are local and th-cy arc uscd only for evaluating the
RHS and storing the values of zand dz / dt at the current point. After the execution
of the function RHS, the variable 1z contains a value of dz/dt at the current point.

The same goes for 1x and 1y (1x, 1y, . . . are the standard global variables, as well
ast0, x0, yoO,..., andpo,pl,...). The condition a0=0 1s used to assign the

zero values to 11, ...,14. The rest of the program detects the local maximum of
Zand locates it by linear interpolation. ' -

In order to get a graph of the next-maximum map for the attractor you’ll need to pass
the transients before plotting this graph. There are two possible ways to do this: the
first s to pass transients, then set a new initial point by pressing (Shift—F10), clear the

windows and begin recomputation, and the second is to use the limits of visibility.
These limits are in the Parameter window and their default values are -1D50 and
1D50. The lower limit can reliably be set to 100 but if you do this then increase the

upper integration limit so that it is much greater than 100,

11.5. Poincaré map.

Constructing a Poincaré map is performed similar to constructing the next-maximum
map. Iraditionally, the Poincaré map for the Lorenz system 1s defined on the cut
plane = = r -1, where it maps the intersection of a trajectory with the cut plane to
the next intersection in the same direction. The rel_cvami program for FO has the

following form:;

FO = {glo 11,12 loc'l3,l4,15,16 1f a0=0 {11=x0 12=y0 13=0
14=0 15=0 16=0) 13=z-p2+1 if 13<0 (1f 14>0 {11=15~(x- |
15)/(13-14)*14 l2=l6-(y—l6)/(13-14)*l4}} 14=13 15=x lé=y} 0O

In this program the downward intersection poimnts are detected and located. The
global variables 11 and 12 represent the x and y-coordinates of the intersection

point.

To compute an orbit of the Poincaré map of the underlying chaotic trajectory of
Figure 29, select the state Poincaré map - (downward intersections with
the plane z=r-1) and begin the simulation. The plot obtained using this state is
shown 1 Figure 33. Here, the intersections of the trajectory with the cut plane is
shown in the top window, and the projections of this trajectory on the planes (x,vy)
and (x, z) are shown in the bottom two windows. It should be emphasized that
computing an orbit of the Poincaré map for the Lorenz system requires a sufficiently
large integration interval, otherwise some essential details of the map may be

omitted.
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Figure 33. Computation of the Poincaré map for the Lorenz system (10) with two
 different phase projections of a trajectory shown as well. |

IFor some problems it is necessary to interrupt the simulation after returning to the cut
plane. To do this, declare one more local variables, such as 17 in the program above,
and insert the operator 17=brk after the operator 12=16-. . .. The function brk

has the same effect as pressing (Esc). The archived state Poincaré map (with an
interruption after each downward intersection) refers to this

example.

11.6. Three-dimensional plot.

We'll now learn about a method for constructing a three-dimensional plot of an
attractor.  Consider an orthogonal projection from three-dimensional space with
Cartesian coordinates x, y, = and spherical coordinates u . ¢ defined as follows:

U=Xcos(d)+y - sin(¢)
_ | | 1
U=[-.x'sin(¢~)+y-cos(¢»)]-cos(u})+:—:-sin(w.) ( )

Here ¢ and  are the angle coordinates of the pomnt of view of the sphere with the
center at the origin, and the plane of representation is orthogonal to a vector
connecting the origin and the point of view.

The simplest way to implement formula (11) 1in TraX is to use the functions F1 and
F2 as coordinates of a window, specifying them as follows: o

F1 = xX*cos(p4) + Y*sin(p4) :
F2 = (-X*sin(p4) + Y*Cos(p4) ) *cos(p5) + z*sin(pS)*,
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where p4 and ps will be the new parameters. After these functions are specified,
create a window with abscissa F1 and ordinate F2 , choose the appropriate values of
parameters P4 and PS5, set the corresponding limits for the window, and simulate the
system. This approach is supplied by a special procedure for drawing 3-D axes and is
implemented in the state 3-D plot. Select this state and begin computation. The
- resulting graph is shown in Figure 34a. Here the parameters P4 and P5 correspond to
the angles ¢ and y which are measured in degrees, with P4=110 and P5=60.
Another projection with P4=130, and PS=60 is shown i Figure 34b. This corre-

sponds to a rotation of the attractor shown in Figure 34a around the z-axis.
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Kigure 34a.  3-D plot of the Lorenz attractor.
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Figure 34b. Same as Figure 34a but the viewing angle has been rotated clockwise
o around the z-axis by 20 degrees (compare P4 in both Figure 34a and b).

To display the functions used in implementing the ?-D plot_, press (Sllifl--Fl‘J (.se(;
Figure 35). In this model, functions F1 and F2 specity the lmi:ar II:aIISfOFIH.‘:ilthIl l0

(11) with the coefficients denoted as 11,12,13, and l-? . -I‘I-JIICI-IOI'I'F3 gives the
values of these coefficients and is called from FO when an uuuahzaum} 1S performed.
Function F4 furnishes a way to draw axes and it is also called from Fo In the operator
11=F4.. The parameter P6 sets the length of the axes: iIf you delete this 0per:1-tf)r no
axes will be drawn. The procedure of drawing axes is pased upon the Cflpa.blllty of
being able to call FO multiple times and change the plottmg at[rlbutc,s, which is coded
by a value of Fo, ecach time. In general, witl} this approacl:n you'll often have to
experiment to choose the limits of the F1-F2 window appropnatel_y.



Press any key
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Figure 35. 'The tunctions used to draw the 3-D axes and plot the trajectory in
Figure 34. ' -

11.7. Lyapunov exponchl.

The last problem to be discussed in this lesson is the calculation of the maximum
Lyapunov characteristic exponent (LCE) for the Lorenz systemn.

Sclect the state Lyapunov exponent of the equations named Lorenz system
wlth variational equation. Begin computation and you will see (Figure 30)
a time evolution of three variables: x (top window), the norm of the variational
equation solution v (u?+v?+ w?) (middle window), and the variable 13 (bottom
window). The limit value of this variable as time tends toward infinity gives the
maximum LCE, therefore, we’ll call (3 the maximum LCE.

(3
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Figure 36. The computation of the maximum Lyapunov characteristic exponent.
' Top window - the time dependence of x: middle window - a norm of the

~solution of the variational equation versus t; bottom window - the evo-
lution in time of variable 13 which gives an approximation of the Lya-
punov exponent as t tends toward infinity. The scale for the norm is

[-5,50] and the scale for 13 is [0.5,1.5].

Look at the parameter P6 in the Parameter window. It displays the current value of
13. The use of a parameter for output is a useful way to display the values of some

variables during integration.

Figure 36 shows the small-amplitude oscillations of 13 near a value 0.9, and this may
be regarded as the approximation of the maximum Lyapunov exponent for the given
system’s parameters. The algorithm used for computing the maximum LCE (see
Parker and Checig,‘, 1989) 1s based on integration of system (10) with variational
- equations. Since the solution of the variational equations displays unlimited growth,

it 1s renormalized after each time interval ©. We consider it a parameter of the algo-
rithm and denote it by PS. This parameter needs an appropriate choice; its value
shouldn’t be too small or too large. Notice that it is the renormalization which causes
the “jumps” on the plots of the norm and 13 versus t in Figure 36. In Figure 37 the
integrated 6th-order system and the function Fo which provides the calculation of the

~ maximum LCE are shown. Note that the computation of the maximum LCE is a

time-consuming procedure because a 6-dimensional system is being integrated over a
large time interval. '



Press amwy key

dX/dt =—pl &« (x—y)
dY/dl=p2ex—y-xaz

dZ/dt =xey—-p3az
du/dt=~-ple(u—v)

dV/dt = (p2-2) sy~v—xoy
dH/dt=ysutxsv—pIay |

F8(aB)=  (glo 18,11,12,13,14 {f 2B=8 (18=8 11zt 13:8 uz{ v=B u=8)

else (If t-11>=p5 (12=sqr(u"2¢v 2¢u D 18:=1B8+10g(12) 13
187t u=u/12Z v=wl2 wwlZ 11=t p6=l3}}}5

the tunction Fo. This function is for calculating the value 13 which is
regarded as approximation of the Lyapunov exponent. -
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‘Lesson 12: Phase portraits, bifurcation diagrams and keystroke macros

In this lesson you’ll learn some special TraX procedures for conducting iterated pro-

cesses; we'll call this procedure the keystroke macro. We’ll demonstrate the use of the
keystroke macro through two examples. First we’ll construct a phase portrait of a

+  two-dimensional differential equation system and second, we’ll compute the bifurca-

tion diagram for a one-dimensional map. In both problems the use of a macro will

“substitute for tediously repeating certain actions. In this manner the keystroke macro

becomes a tool for storing a sequence of keystrokes and then replaying these key-

strokes by pressing a single(Alt}-digit key combination.

12.1. Phase portrait

We'll begin with a predator-prey model (1). In the Archives find the differential
equations Predator-prey model. Next, select the state Phase portrait
made by a keystroke macro. This state is similar to that previously used in

~ Lesson 2. Using the keystroke macro, we will compute the series of trajectories which

~have the initial points lying on the line X = 1.1. Draw the axes and then press

' to Initiate the macro creation. This macro will contain three operations,

these are:

(1) press (10 to begin computation;
(2) press (¥) to move the initial point down; .
(3) press () to move the initial point in the same direction using “large” step.

To complete the macro definition, press (Alt-1), Following this, the three actions .
(1-3) now become a new compound operation which is available by pressing (Alt-1).,
Press (Alt-1] several times and the new trajectory should appear after you execute -
this macro. The resulting phase portrait is shown in Figure 6. Note, however, that
you cannot embed macros within each other; the only way to repeat a macro is to
Invoke it again by pressing the key combination again. '

~Next, you can playback the macro with another value of X0 or (which may be more

interesting) with another value of the parameter P2. lorexample, set P2=0.57 and
Y0=0.7, clear the windows, re-draw the axes and press the (Alt=1) key several times.
You will see a number of trajectories appear which each correspond to a new
parameter value. Make sure, however, that a stable periodic orbit (i.e., limit cycle)
appears. You must be careful when using a keystroke macro: the starting position .
when itiating the macro should be the same or very similar to that which was used
when the macro was defined. That's why we set the value of Yo prior to starting the
last experiment. ' B '




‘There is another way to accomplish the same results. Place the IPI in the right upper f- SR "  |

~ corner, clear the window and re-draw axes. Now, highlight the entry Yo=. .. and
press to begin the following macro-definition: |

(1) press (F10) to begin computation;
(2) type- - 0.05. . -

Complete this macro definition by pressing (A1t=2), which is the key combination for .

- 1nvoking this macro. You might be wondering just what - - 0.05 means in this L
~macro. This instruction tells TraX to decrease the value of YO by 0.5 each time the o
macro is run (check the values in the Parameter window to be convinced of this). In -

- general, if you highlight an entry containing a variable and then enter - — aor + + R

a, the highlighted variable will be decreased or increased, respectively, by the value

a. Now, if you invoke the macro several times, the y-coordinate of the initial o
point will be decreased by 0.05, and for each initial point the trajectory will be

recomputed. The result will be similar to that shown in Figure 6 (with P2=0.65). S

Note that if you highlight the entry X0=. . . and run the macro, the value of

- X0 will change by the specified increment.

12.2. Bifurcation diagram

“Next let’s consider the map (4). We want to construct the so-called bifurcation dia-

gram for this map which will illustrate the dependence of an asymptotic mode upon a o

~control  parameter. Find the- difference equation Logistic® = map

X’=pl*x* (1-x) in the Archives and select the state Bifurcation diagranm.

Alter entering the Investigation mode you will see graphic window with the ordinate
x and the abscissa p1 (note that here, p1 is equivalent to parameter a in (4)). You

should be aware that a system parameter may be used as th

e label of a window’s axis,
as a phase variable, time, or as a user-defined function. '

Now, activate the p1-x window and look at the limits. They should be: AMIN=2. 7,

AMAX=4.02, Xmin=0, Xmax=1. We’ll define a new macro and name it {A11-3 ). B

The reason we’re using a new name (e, key combination) is so that the previously o
defined macro will not be redefined or overwritten?. Highlight the entry P1=2.7and =

~enter (Ctri-F4 ] to.initiate the new macro-definition as follows;

1) enter ++0.01 (increments the parameter value by 0.01);

2) enter _[l"!(_)) (computcs-thc__ trajectory);

3) enter (Shift-F10) (10 set a new initial point by placing it on the trajectory’s most

recent point).
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ZThis suggests how (o crase a macro dehinition, i.e., write a null macro over a previously defined macro, L
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Complete the macro-definition by pressing (A1t-3) and then run this macro several
times. The resulting bifurcation diagram is shown in Figure 38. Note, however, that
the transients are not visualized on the bifurcation diagram because by setting 100 as

the point at which plotting begins (in the Parameter window), TraX begins plotting
from n=100. Also, the maximum value of nis Nmmax = 1000 You can create a

" more detailed bifurcation diagram if you desire by incrementing the parameter by a
smaller value (this will, of course, require more computational time to complete the
diagram over the same limits). Unfortunately, a macro-definition can’t be edited so

~ you’ll have to redefine the entire sequence of keystrokes.

P1=4. 8088880

points

: :; - indicator

windows 1

Figure 38.  The bifurcation diagram of the logistic map (4) computed by a keystroke
' macro. The parameter P1 is varied from 2.7 to 4.0 by increments of 0.01.

Now, let’s consider the same map but with additive noise:
X' =ax{l-x)+et - o (12)

where ¢ 1s gaussian random noise and eis a parameter. It is interesting to construct a
bifurcation diagram for this case and compare it with unperturbed one. To imple-
ment this, specify a function FO as follows:

FO = {(x = x + p2*gau) O

Here gau is a built-in TraX function which computes a normally distributed
pseudo-random value with a mean of zero and a standard deviation of one. The
function FO specifies gaussian noise which acts additively on each point of a trajectory
during its computation. The parameter p2 can be regarded as théf}hmplitude of the

random perturbation of a trajectory. Usually, however, the function"fo is not called
i S
b



during computation. To activate the processing of a trajectory by the program speci-
fied in the function Fo, find the Parameter window entry CALL FO:NO and toggle it
to CALL FO:YES. This means the function FO will be called after each iteration of

a map (this option is similar to that of the ODE solvers called Merson+Fo and

Euler+F0). Next, set P1=2.7 and P2=0.002, clear the window and playback the o o
‘macro by pressing several times to develop a bifurcation diagram of a ran- R

- domly perturbed map (12) (don’t forget about highlighting the entry P1=. .. before N N

~1nitiating the macro). Figure 39 shows a bifurcation diagram of randomly perturbed =
- map. Notice that the influence of noise is more significant near the bifurcation values R

~ of the parameter. In addition, the periodic orbits which have large periods appears to

- be more sensitive to the addition of noise. Thus chaotic behavior can arise earlier (le.

for smaller parameter values) than for an unperturbed map.

SR
el i
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~Figure 39.  The bifurcation diagram of the logistic map perturbed by gaussian noise
(compare with Figure 38). . L
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Lesson 13. Stochastic modeling in TraX

In this final lesson we will study the influence of additive random noise on a dynami-
cal system’s behavior and demonstrate how TraX can be used to Investigate this kind

- of problem. We will use as an example a purely stochastic model of neuronal activity.

Consider the model of the so-called nonformal neuron (Kryukov 1978). Suppose there

‘are two processes 1n time which govern the generation of nerve impulses or spikes.
The first process is a membrane action potential function and the second one is a

threshold of excitation. When the membrane action potential reaches the threshold,
the spike is generated. Following the spike, the membrane potential and the thresh-
- old both return to their initial values, and both processes start again. It is assumed
that the membrane potential and the threshold decay exponentially at each step of
the process. And in addition, at each step, noise (a normally distributed random

number) is added to the membrane potential.

Let us denote the membrane potential by x', and the threshold value byy.Letzbe a

o (boolean) variable which indicates if there is a spike (2 =1)or'not (z=0). The

' discrete-time neuron model, therefore, may be desc:ibed as tollows;
Ifx(n)Sy(n') then: -
.X‘(IZ'*"I):F/(X(IZ)),

y(ne=Fa(y(n). - U5
z(n+1)=0, | '
u(n+1)=u(n),

u(n+1)=0, .

wn+ 1)_=w(rz).

Otherwise, if x (r) >y (n), thcn:

X(2+1)=x(0), '

y(n+1)=y(0), o o '(ISb)
z(n+1)=1, ' '
u(n+1)y=n+1,

v(n+l)=u(n+1)-u(n),

w(n+ 1)=w(n)+1.
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As you can see, we have introduced three additional variables u,v,w: u is the

moment of the last nerve excitation, vis the interspike interval, and w is the ordering
‘number of an action potential or spike. The initial conditions are assumed to be

x(0)=0, y(0)=1, 2(0)=0. u(0)=0, v(0)=0, w(0)=0.  Func- ,
tions F / andF 2 are dclfinedasfollo_ws: | D

ey

where ¢ is a normally distributed variable with 2 mean equal to zero and a standard N -
deviation equal to one. Here, a,b,c,d and eare the model parameters, under the
restrictionsO < (a,d.e)< 1,and (0,¢)>0. Thefirst termin F / corresponds to the

decay of the potential (« < 1), and the others describe the noise component. The .

function /-2 implies vy decays to ewithrated .

be generated. As soon as the spike is generated, then,'according to formulas (156 ),

the membrane potential & and the threshold Y are reset to their initial values, and the
new values of variables u, v and w which completely describe the spike activity are .
calculated. ' ' . S T

The random nature of the membrane potential in the mode] implies that the time .

interval v between the spikes is a random value. The most important problem with o

- the model concerns the stochastic properties of the time series of interspike intervals.
One of the hypotheses is that the process of the spike generating is close to Poisson
with an exponentially decaying probabulity density distribution. We will analyze this
property here by calculating a histogram of interspike intervals. Using the model and
the TraX facilities one can study other questions on impulse generation such as the

~influence of periodic torcing on the process, etc. - .

Now let’s experiment with the model. Find this model in the TraX Archives among
~ difference equations. Itis named Stochastic model of a neuron. The model
was specified in TraX in the form shown in Figure 40. The parameters PO, P1, P2,
P3, and P4 correspond to «,b,c.d and ein (16), respectively.  Function Fo is |
considered here as a part of the model specification. It is called after each evaluation
of the RHS to correct values of x, Y. u, vandw in the case of spike generation,
~as described in (150). Besides, the function FO stores a sequence of interspike
intervals in a global array go for statistical analysis which will be done after simu-

lation.

Cp R e
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L “
"o{toc 10 if x>y (0«1 else 10-0} 10

O0(al)- (gle £1,90[250] tec 10 if 20«0 {(x0°0 yO0=] 20-0 0-0 v0«0
| wO=0 1l=w0) if zel (xex0 yoy0 vea-n g*s woawe] ||ey g0 !
L]=v)} il 112250 10=brk)0 |
fl= PO°x+plep2®pgan
F2«  p3*(y-pd)e+pd
F3e {(gle 11,12,90(2S0) tec 10,16 100 1220 while 10<i] (12=]
2¢0[10) 10=70+)) 12¢12/711)12 .
P 4= (gle 11,12,13,g0{250] lec 10 10=0 130 while JO<i] (13~])
Je(gO[10])-12)%2 10-10+1) Pdesqe(137(81-1)) ) 13
F3=  {glo 11.14,00[250).g1(20) tec 10.16 1020 while 10<p7 (gl
{10]=0 FO210o1) T4«p7/(p6-pS) 10-0 whilte 10<t) {16=imt((
QO0[10]-pS))* 14 if 16°(16-p7e1)csp Ql[16jegl{16])e) J0=100
1) 100 while 10<p7 {giflo])=glif10])/11 10101))0 |
F6(al0)=  (gle 11.14.g1[20] tec 10,16 l6=int((a0-pS)*14) if 16°(16
"p7el)<eQ 10=gl[16] else 10-0)10 |

Press any key

Figure 40. The specification of the stochastic model of the anhlformal neuron (15)
and (10), using procedure-functions for statistical analysis.

The functions F3, F4 . F5, and F6 are not directly related to the model descrip-
tion. Functions F3 and F4 are for calculating the mean and standard deviation,
‘respectively, for series of interspike intervals. Function F5 counts the number of
interspike intervals. The parameters P5 and Pé give the boundaries of the interval on
which the histogram will be built, and parameter p7 gives a number of bins in this
interval. The last function, Fe, presents the histogram as a function of the interspike
interval. All the functions described in this paragraph will be run after the model is

simulated using the options Compute and (plot a function graph).

Select the state Spike generation and histogram computation. After
entering the Investigation mode you can immediately start simulation. Figure 41
shows the time evolution of x, y, and z. In the top window there are two curves:
the upper curve corresponds to the threshold of excitation, and the lower one shows
the membrane potential. On the bottom of the screen you can see the time series of

-generated spikes.
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Figure 41.  Simulation of the neuronal model (15) and ( 16). In the top window the S
threshold and membrane potential functions are plotted. In the bottom R
window, the series of generated spikes or action potentials are shown.

“Notice that there are two overlapping windows in the top of the screen: t-x and t

- - . . 1 -
. .. L 1 o
.. .
. - o '
- .. - - [ . CE -
. - " = x4 . - .
: .
.

(you can check this by activating each window). Both of these windows have the same
limuts which makes the observation of these processes more convenient. It should be

emphasized that your results of the model simulation will not be exactly
those shown here because of the stochastic nature of this model. N
the statistical properties of the spike generating process.

the same as
ext we will analyze

In order to compute and plot the histogram of interspike intervals, we need to simu- |

late the model on a time interval which is long enough. For the given parameter

values, P0=0.98, P1=0.002, P2=0.02, P3=0.95 and P4=0. 1, 15000

iterations should be appropriate because this gives approximately 250 spikes. You

can see in the description of the function FO that due to the operator, if 11=250
~ 10=brk, the simulation will be interrupted after reaching 250 spikes (11 is a number

of spikes and brk is a standard function with an action equivalent to (Esc)). The

limiting number of 250 is exactly the number of elements of the go array 1n which the
interspike intervals are stored. : - o

- Now, make the Parameter window active and set Nmax=15000. Start the simulation

of the function F3 (type F3), which is a mean value. Then calculate the value of F4 ,
the standard deviation in a similar fashion. In our cxperiments we found the mean

close to 60, and the standard deviation close to 25. Then the function F5 should be

. % + N
. [ ]
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and after it’s finished, initiate the option Compute (press (7)) and calculate the value

~computed in the same way (i.e, press (?) and after the. prompt Compute:, ype F5),



The specific feature of the function F5 is that after it runs the result which appears on
the screen (that is zero value) has no special meaning. The main result of function Fs

is the computation of a histogram.

To plot the histogram, change the window grouping (Le., toggle towindows 2). You
will see one graphic window with abscissa v and ordinate F6 (v). Activate this win-

dow ([ES)) and then press F3) to plot the graph of the function denoted on the ordi-
nate; a histogram similar to that in Figure 42 should be plotted. This confirms the

‘previously mentioned hypothesis that the probability density of interspike intervals is
exponentially decaying, but certainly some additional experiments should be done.

For developing a histogram we have chosen an interval ranging from 20 through 150;
and the number of bins equals 20. You can set some other values of corresponding
parameters P5, P6, and P7, and then compute (using function F5) and re-plot the

‘histogram as before.

Figure 42. Histogram of Interspike time intervals for the neuronal model (15) and

(16).
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List of TraX commmands A-1

Appendix A

List of TraX commands

This appendix lists the three groups of TraX commands: archive management commands (A.1), input
and editing commands (A.2) and system analysis commands (A.3).

A.1 Archive management commands

@ |Gotothe presious fine '

-
[ . a . .
) - iy = N .

m Create a new dynanucal system usig an example

shift-Ins Create a new dynamical system without using an cxample.

Delcte an empty level, a dynamical system without stored states

Rename alevel, a dynamical system, or a slatg. _

Display the RHS of a system.

01 o state,
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List of TraX commands _. o | - - A2

~ A.2 Input and editing commands

CCFUNCTION i Firi s

Input a pair of parentheses ().

Input a pair of square brackets [ ].

Input SQR( ).
Input TAN(). -

Move the cursor to the riaht (to the start of the tent),

Get help.

Notly TraX that you have edited a function or have specificd a dynamical sys-

tem (il nothing was typed). B | .

(Esc) Re-input the RS,

b -
3
| s
' R TR
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List of TraX commands

A.3 System analysis commands

ates of a frame (sce (shirt-ro).

Aclivate the next window.

b e i DL TE e

aframe (see (Sua

Start a keystroke macro definition. Press
store the macro definition.

EYop digit key to complete and

Edit a function loc

Exchange a high

Plot a trajectory in the backward dire

ction using the foregroumd color of active
window. - S

nlall

ard direction using the foreground tolor of active

Plot a trajectory in the forw
window.

AT LY T S
' Bloer e

t=141)).
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List of TraX commands

A-4 ., 2 j

Playback the previously defined keystroke macro number digit or complete
macro definition.

Enter the function editing mode.

Evaluate a function. :

Evaluate a function and assign the value to the highlightcd paramcter.

Dclcte an active graphic window.

Create a new graphic window.

Move the parameter highlight one linc up.

Move the parameter highlight one line down.

Increment the highlighted parameter.

Dccrement the highlighted parameter.

Increment the corresponding coordinate (x, ¥, u, v, w, 0, q, r, Or s) of an initial
pomt. |

Decrement the corresponding coordinate (X, Y, UV, W, 0,Q R,orS)of an .
titial point. - ' |

-y

[ncrement an X-coordinate of an initial point if the parameter w
otherwise increase the coordinate corrcsponding 1o abscissa.

indow is aclive

indowis

Decrement an X-coordinate of an rutial pointf lhcdpammélcr W
g (o abscissa.

active, otherwise decrease the coordinate correspon

- Increment a Y-coordinate of an initial pomntaf the paramcter window is aclive,
? otherwise increase the coordinate corresponding to ordinate.

| Decrement a Y-coordinate of an initial pomntif the parameter window is aclive,
- otherwise decrease the coordinate corresponding to erdinate. ' '
F Repeat the previously pressed directional arrow key 32 umes. |
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