Adap

(version 2.4, win32, 20.05.2024)
Purpose:
  1. calculation of coefficients of expansion of a function specified by a set of samples into a Fourier series in classical orthogonal polynomials and functions
  2. edition of data using orthogonal expansions
  3. calculation of derivatives, definite/indefinite integrals
Bases:
  1. trigonometric Fourier polynomials
  2. algebraic polynomials of Legendre, Chebyshev of the first and second kind, Jacobi
  3. orthogonal functions of Sonin-Laguerre, Hermite
  4. Bernstein polynomials
Methods:
  1. linear interpolation
  2. Gaussian quadrature formulas
  3. Fejer summation method
  4. Clenshaw recurrence formula
  5. algebra of orthogonal series
Input and output:
  1. nodes and weights of Gaussian quadrature formulas (output only)
  2. expansion coefficients
  3. function value table
Input fields:
  1. - selection of basis functions
  2. - number of terms of the orthogonal series
  3. - number of nodes of the Gaussian quadrature formula function
  4. - application button
  5. - parameter alpha of the Sonin-Laguerre and Jacobi bases
  6. - scale factor for the Sonin-Laguerre and Hermite bases or the beta parameter of the Jacobi basis
  7. - approximation interval
Information line:
  1. - approximation error (quadratic/infinite norm)
  2. - operation execution time
  3. - area (signal without trend/approximation)
  4. - status of the left and right mouse buttons (zooming and dragging/entering left and right interval boundaries)